Journal of Experimental and Theoretical Physics

, Volume 117, Issue 3, pp 487–498 | Cite as

Subgap states in disordered superconductors

Article

Abstract

We revise the problem of the density of states in disordered superconductors. Randomness of local sample characteristics translates to the quenched spatial inhomogeneity of the spectral gap, smearing the BCS coherence peak. We show that various microscopic models of potential and magnetic disorder can be reduced to a universal phenomenological random order parameter model, whereas the details of the microscopic description are encoded in the correlation function of the order parameter fluctuations. The resulting form of the density of states is generally described by two parameters: the width Γ measuring the broadening of the BCS peak and the energy scale Γtail that controls the exponential decay of the density of subgap states. We refine the existing instanton approaches for determination of Γtail and show that they appear as limiting cases of a unified theory of optimal fluctuations in a nonlinear system. The application to various types of disorder is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 8, 1090 (1959); A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9, 220 (1959).MathSciNetGoogle Scholar
  2. 2.
    P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961).Google Scholar
  4. 4.
    A. Anthore, H. Pothier, and D. Esteve, Phys. Rev. Lett. 90, 127001 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    K. Maki, Prog. Theor. Phys. 29, 333 (1963); K. Maki, Prog. Theor. Phys. 31, 731 (1964).ADSCrossRefGoogle Scholar
  6. 6.
    K. Maki, in Superconductivity, Ed. by R. D. Parks (Marcel Dekker, New York, 1969), p. 1035.Google Scholar
  7. 7.
    A. I. Larkin and Yu. N. Ovchinnikov, JETP 34, 1144 (1972).ADSGoogle Scholar
  8. 8.
    J. Zittartz and J. S. Langer, Phys. Rev. 148, 741 (1966).ADSCrossRefMATHGoogle Scholar
  9. 9.
    I. M. Lifshitz, JETP 26(2), 462 (1968).ADSGoogle Scholar
  10. 10.
    K. Usadel, Phys. Rev. Lett. 25, 507 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    J. S. Meyer and B. D. Simons, Phys. Rev. B: Condens. Matter 64, 134516 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    A. Lamacraft and B. D. Simons, Phys. Rev. Lett. 85, 4783 (2000); A. Lamacraft and B. D. Simons, Phys. Rev. B: Condens. Matter 64, 014514 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    M. G. Vavilov, P. W. Brouwer, V. Ambegaokar, and C. W. J. Beenakker, Phys. Rev. Lett. 86, 874 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigel’man, Phys. Rev. Lett. 87, 027002 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    F. M. Marchetti and B. D. Simons, J. Phys. A: Math. Gen. 35, 4201 (2002).MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    C. A. Tracy and H. Widom, Commun. Math. Phys. 159, 151 (1994); C. A. Tracy and H. Widom, Commun. Math. Phys. 177, 727 (1996).MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    M. V. Feigel’man and M. A. Skvortsov, Phys. Rev. Lett. 109, 147002 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge, 1996).CrossRefGoogle Scholar
  19. 19.
    A. M. Finkel’stein, in Soviet Scientific Reviews, Ed. by I. M. Khalatnikov (Harwood, London, 1990), Vol. 14.Google Scholar
  20. 20.
    A. Altland, B. D. Simons, and D. Taras-Semchuk, Adv. Phys. 49, 321 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    D. A. Ivanov, Ya. V. Fominov, M. A. Skvortsov, and P. M. Ostrovsky, Phys. Rev. B: Condens. Matter 80, 134501 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    A. Silva and L. B. Ioffe, Phys. Rev. B: Condens. Matter 71, 104502 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    D. Taras-Semchuk and A. Altland, Phys. Rev. B: Condens. Matter 64, 014512 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, J. Low Temp. Phys. 110, 841 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    B. L. Altshuler, JETP Lett. 41(12), 648 (1985); P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).ADSGoogle Scholar
  28. 28.
    B. L. Altshuler and B. Z. Spivak, JETP 65(2), 343 (1987).Google Scholar
  29. 29.
    M. Houzet and M. A. Skvortsov, Phys. Rev. B: Condens. Matter 77, 057002 (2008).CrossRefGoogle Scholar
  30. 30.
    Mesoscopic Phenomena in Solids, Ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb (North-Holland, Amsterdam, The Netherlands, 1991).Google Scholar
  31. 31.
    M. A. Skvortsov and M. V. Feigel’man, Phys. Rev. Lett. 95, 057002 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    A. M. Finkestein, JETP Lett. 45(1), 46 (1987); A. M. Finkestein, Physica B (Amsterdam) 197, 636 (1994).ADSGoogle Scholar
  33. 33.
    Ya. V. Fominov and M. A. Skvortsov, in preparation.Google Scholar
  34. 34.
    S. Pilgram, W. Belzig, and C. Bruder, Phys. Rev. B 62, 12462 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    D. Taras-Semchuk and A. Altland, Phys. Rev. B 64, 014512 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    M. G. Vavilov and A. I. Larkin, Phys. Rev. B 67, 115335 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    D. A. Ivanov and Ya. V. Fominov, Phys. Rev. B: Condens. Matter 73, 214524 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations