Journal of Experimental and Theoretical Physics

, Volume 117, Issue 4, pp 664–671 | Cite as

Lattice dynamics and phase diagram of aluminum at high temperatures

  • Yu. B. Kudasov
  • O. M. Surdin
  • A. S. Korshunov
  • V. N. Pavlov
  • N. V. Frolova
  • R. S. Kuzin
Solids and Liquids

Abstract

The dispersion of phonons in the fcc, hcp, and bcc phases of aluminum is calculated at ultrahigh pressures by the method of small displacements in a supercell. The stability of the phonon subsystem is studied. The thermodynamic characteristics are calculated in the quasi-harmonic approximation, and a phase diagram of aluminum is plotted. As compared to the Debye model, the use of a phonon spectrum calculated in the quasi-harmonic approximation significantly broadens the hcp phase field and strongly shifts the phase boundary between the fcc and bcc phases. The normal isentrope is calculated at megabar pressures. It is shown to intersect the fcc-hcp and hcp-bcc phase boundaries. The sound velocity along the normal isentrope is calculated. It is shown to have a nonmonotonic character.

Keywords

Sound Velocity Phonon Spectrum Phonon Dispersion Debye Model Ultrahigh Pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).Google Scholar
  2. 2.
    V. E. Fortov, Phys.-Usp. 52(6), 615 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    V. Ya. Ternovoi, S. V. Kivitov, A. A. Pyalling A. S. Filimonov, and V. E. Fortov, JETP Lett. 79(1), 6 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    T. N. Kolobyanina, Phys.-Usp. 45(12), 1203 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    E. G. Maksimov, M. V. Magnitskaya, and V. E. Fortov, Phys.-Usp. 48(8), 761 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    J. Lv, Y. Wang, L. Zhu, and Y. Ma, Phys. Rev. Lett. 106, 015503 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    V. E. Fortov, A. M. Molodets, V. I. Postnov, D. V. Shakhrai, K. L. Kagan, E. G. Maksimov, A. V. Ivanov, and M. V. Magnitskaya, JETP Lett. 79(7), 346 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    M. I. Eremets, E. A. Gregoryanz, V. V. Struzhkin, H. Mao, R. J. Hemley, N. Mulders, and N. M. Zimmerman, Phys. Rev. Lett. 85, 2797 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    G. V. Boriskov, S. I. Belov, A. I. Bykov, M. I. Dolotenko, N. I. Egorov, A. S. Korshunov, Yu. B. Kudasov, I. V. Makarov, V. D. Selemir, and A. V. Filippov, J. Low Temp. Phys. 159, 307 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. B. Kudasov and A. S. Korshunov, JETP Lett. 79(1), 32 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Akahama, M. Nishimura, K. Kinoshita, H. Kawamura, and Y. Ohishi, Phys. Rev. Lett. 96, 045505 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    R. F. Trunin, Phys.-Usp. 37(11), 1123 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Pavlovskii, A. I. Bykov, M. I. Dolotenko, A. A. Karpikov, N. P. Kolokolchikov, V. I. Mamyshev, and O. M. Tatsenko, in Megagauss Technology and Pulsed Power Applications, Ed. by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum, New York, 1987), p. 243.Google Scholar
  14. 14.
    K. T. Lorenz, M. J. Edwards, A. F. Jankowski, S.M. Pollaine, R. F. Smith, and B. A. Remington, High Energy Density Phys. 2, 113 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    G. V. Boriskov, A. I. Bykov, N. I. Egorov, M. I. Dolotenko, V. N. Pavlov, and V. I. Timareva, J. Phys.: Conf. Ser. 121 072001 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    G. V. Boriskov, S. I. Belov, A. I. Bykov, et al., Abstracts of Papers of the International Conference “The XIV Khariton’s Topical Scientific Readings: High-Power Pulsed Electrophysics,” Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod oblast, Russia, March 12–16, 2012 (RFNC-VNIIEF, Sarov, 2012), p. 99.Google Scholar
  17. 17.
    L. V. Al’tshuler, S. B. Kormer, A. A. Bakanov, and R. F. Trunin, Sov. Phys. JETP 11, 573 (1960).Google Scholar
  18. 18.
    R. G. Greene, H. Luo, and A. L. Ruoff, Phys. Rev. Lett. 73, 2035 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    J.-P. Devis, J. Appl. Phys. 99, 103512 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    M. H. G. Jacobs and R. Schmid-Fetzer, Phys. Chem. Miner. 37, 721 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    V. Mishra and S. Chaturvedi, Physica B (Amsterdam) 393, 278 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    C. J. Pickard and R. J. Needs, Nat. Mater. 9, 624 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    G. V. Sin’ko and N. A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    P. R. Levashov, G. V. Sin’ko, N. A. Smirnov, D. V. Minakov, O. P. Shemyakin, and K. V. Khishchenko, J. Phys.: Condens. Matter 22, 505501 (2010).CrossRefGoogle Scholar
  25. 25.
    S. A. Ostanin, E. I. Salamatov, and V. Yu. Trubitsin, Phys. Rev. B: Condens. Matter 57, 5002 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    G. V. Sin’ko and N. A. Smirnov, in Proceedings of the International Conference “The IX Khariton’s Topical Scientific Readings: Extreme States of Matter, Detonation, and Shock Waves,” Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod oblast, Russia, March 12–16, 2007 (RFNC-VNIIEF, Sarov, 2007), p. 287.Google Scholar
  27. 27.
    G. V. Sin’ko, Phys. Rev. B: Condens. Matter 77, 104118 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    X. Lu and S. V. Hanagud, AIP Conf. Proc. 845, 107 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer, Phys. Rev. B: Condens. Matter 79, 134106 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    V. Vlcek, N. de Koker, and G. Steinle-Neumann, Phys. Rev. B: Condens. Matter 85, 184201 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität, Vienna, Austria, 2001), ISBN 3-9501031-1-2 (WIEN).Google Scholar
  32. 32.
    G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B: Condens. Matter 64, 195134 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    G. J. Ackland, M. C. Warreny, and S. J. Clark, J. Phys.: Condens. Matter 9, 7861 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    D. Alfe, G. D. Price, and M. J. Gillan, Phys. Rev. B: Condens. Matter 64, 045123 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963; Mir, Moscow, 1965).Google Scholar
  37. 37.
    D. V. Livanov, Physics of Metals: A Textbook for Universities, (Moscow Institute of Steel and Alloys, Moscow, 2006) [in Russian].Google Scholar
  38. 38.
    P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 49, 16223 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976; Mir, Moscow, 1979), Vols. 1, 2.Google Scholar
  40. 40.
    R. Stedman and G. Nilsson, Phys. Rev. 145, 492 (1966).ADSCrossRefGoogle Scholar
  41. 41.
    P. M. Sutton, Phys. Rev. 91, 816 (1953).ADSCrossRefGoogle Scholar
  42. 42.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1996).Google Scholar
  43. 43.
    J. C. Kotz, P. M. Treichel, and J. R. Townsend, Chemistry and Chemical Reactivity (Brooks Cole, Pacific Grove, California, United States, 2010).Google Scholar
  44. 44.
    M. J. Tambe, N. Bonini, and N. Marzar, Phys. Rev. B: Condens. Matter 77, 172102 (2008).ADSCrossRefGoogle Scholar
  45. 45.
    M. Kresch, M. Lucas, O. Delaire, J. Y. Y. Lin, and B. Fultz, Phys. Rev. B: Condens. Matter 77, 024301 (2008).ADSCrossRefGoogle Scholar
  46. 46.
    W. J. Nellis, A. C. Mitchell, and D. A. Young, J. Appl. Phys. 93, 304 (2003).ADSCrossRefGoogle Scholar
  47. 47.
    M. Martinez-Canales and A. Bergara, J. Phys. Chem. Solids 69, 2151 (2009).ADSCrossRefGoogle Scholar
  48. 48.
    S. V. Lepeshkin, M. V. Magnitskaya, and E. G. Maksimov, JETP Lett. 89(11), 586 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    R. Boehler and M. Ross, Earth Planet. Sci. Lett. 153, 223 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • Yu. B. Kudasov
    • 1
    • 2
  • O. M. Surdin
    • 1
  • A. S. Korshunov
    • 1
    • 2
  • V. N. Pavlov
    • 1
    • 2
  • N. V. Frolova
    • 2
  • R. S. Kuzin
    • 2
  1. 1.Sarov State Institute of Physics and TechnologyNational Research Nuclear University “MEPhI,”SarovRussia
  2. 2.Russian Federal Nuclear Center-All-Russian Research Institute of Experimental PhysicsSarovRussia

Personalised recommendations