Advertisement

Theoretical model for thin ferroelectric films and the multilayer structures based on them

  • A. S. Starkov
  • O. V. Pakhomov
  • I. A. Starkov
Order, Disorder, and Phase Transition in Condensed System

Abstract

A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

Keywords

Dielectric Layer Transition Layer Phase Transition Temperature Thin Ferroelectric Film Boundary Condi Tions 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Ishibashi, H. Orihara, and D. R. Tilley, J. Phys. Soc. Jpn. 67, 3292 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    L.-H. Ong, J. Osman, and D. R. Tilley, Phys. Rev. B: Condens. Matter 63, 144109 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    M. Glinchuk, E. Eliseev, and V. Stephanovich, Phys. Solid State 44(5), 953 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    Z.-G. Ban, S. P. Alpay, and J. V. Mantese, Phys. Rev. B: Condens. Matter 67, 184104 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    A. L. Roytburd, S. Zhong, and S. P. Alpay, Appl. Phys. Lett. 87, 092902 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    A. K. Tagantsev and G. Gerra, J. Appl. Phys. 100, 051607 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    I. B. Misirlioglu, G. Akcay, S. Zhong, and S. P. Alpay, J. Appl. Phys. 101, 036107 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    J. H. Qiu and Q. Jiang, J. Appl. Phys. 103, 034119 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    X. Lu, B. Wang, Y. Zheng, and C. Li, J. Phys. D: Appl. Phys. 41, 035303 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    J. H. Qiu and Q. Jiang, J. Appl. Phys. 105, 034110 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    V. M. Fridkin, R. V. Gaynutdinov, and S. Ducharme, Phys.-Usp. 53(2), 199 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    K. Ishikawa and T. Uemori, Phys. Rev. B: Condens. Matter 60, 11841 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    B. Strukov and A. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Springer-Verlag, Berlin, 2012).Google Scholar
  15. 15.
    A. Tagantsev, L. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer-Verlag, Berlin, 2010).CrossRefGoogle Scholar
  16. 16.
    M. Marvan, P. Chvosta, and J. Fousek, Appl. Phys. Lett. 86, 221922 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: L. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1995).Google Scholar
  18. 18.
    I. Savelyev and G. Leib, Fundamentals of Theoretical Physics (Mir, Moscow, 1982).Google Scholar
  19. 19.
    N. Akhiezer and M. Alferieff, The Calculus of Variations (Taylor and Francis, London, 1988).zbMATHGoogle Scholar
  20. 20.
    I. Tamm, Fundamentals of the Theory of Electricity (Nauka, Moscow, 1976; Mir, Moscow, 1979).Google Scholar
  21. 21.
    V. N. Nechaev and A. V. Shuba, Bull. Russ. Acad. Sci.: Phys. 72(9), 1230 (2008).CrossRefGoogle Scholar
  22. 22.
    O. G. Vendik and S. P. Zubko, J. Appl. Phys. 82, 4475 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    H. Bateman, Higher Transcendental Functions (McGraw-Hill, New York, 1955).zbMATHGoogle Scholar
  24. 24.
    S. T. Davitadze, S. N. Kravchun, B. A. Strukov, B. M. Goltzman, V. V. Lemanov, and S. G. Shulman, Appl. Phys. Lett. 80, 1631 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. S. Starkov
    • 1
  • O. V. Pakhomov
    • 1
  • I. A. Starkov
    • 2
  1. 1.Institute of Refrigeration and BiotechnologiesSt. Petersburg National Research Univeristy ITMOSt. PetersburgRussia
  2. 2.Institute for MicroelectronicsVienna University of TechnologyWienAustria

Personalised recommendations