Advertisement

Dynamical instability of collapsing radiating fluid

  • M. Sharif
  • M. Azam
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the critical value γ < 1 for both radiative and nonradiative perturbations.

Keywords

Dynamical Instability Perturbation Scheme Newtonian Approximation Post Newtonian Approximation Instability Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chandrasekhar, Astrophys. J. 140, 417 (1964).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    L. Herrera, N. O. Santos, and G. Le Denmat, Mon. Not. R. Astron. Soc. 237, 257 (1989).ADSzbMATHGoogle Scholar
  3. 3.
    R. Chan, L. Herrera, and N. O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993).ADSGoogle Scholar
  4. 4.
    R. Chan, L. Herrera, and N. O. Santos, Mon. Not. R. Astron. Soc. 267, 637 (1994).ADSGoogle Scholar
  5. 5.
    R. Chan, Mon. Not. R. Astron. Soc. 316, 588 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Hayward, Classical Quantum Gravity 17, 1749 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Sharif and Z. Ahmad, Gen. Relativ. Gravitation 39, 1331 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    A. Di Prisco, L. Herrera, M. A. H. MacCallum, and N. O. Santos, Phys. Rev. D: Part. Fields, Gravitation, Cosmol. 80, 064031 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Nakao, T. Harada, Y. Kurita, and Y. Morisawa, Prog. Theor. Phys. 122, 521 (2009).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    M. Sharif and G. Abbas, J. Phys. Soc. Jpn. 80, 104002 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    M. Sharif and M. Azam, J. Cosmol. Astropart. Phys. 02, 043 (2012); M. Sharif and M. Azam, Gen. Relativ. Gravitation 44, 1181 (2012); M. Sharif and M. Azam, Chinese Phys. B 22 050401 (2013); M. Sharif and H. R. Kausar, J. Cosmol. Astropart. Phys. 07, 022 (2011); M. Sharif and H. R. Kausar, Astrophys. Space Sci. 337, 85 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    M. Sharif and M. Azam, J. Phys. Soc. Jpn. 81, 124006 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    K. S. Thorne, Phys. Rev. B: Condens. Matter 138, 251 (1965).MathSciNetADSGoogle Scholar
  14. 14.
    E. Poisson, A Relativistic’s Toolkit (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
  15. 15.
    G. Darmois, Memorial des Sciences Mathematiques (Gauthier-Villars, Paris, 1927), Issue 25.Google Scholar
  16. 16.
    H. Chao-Guang, Acta Phys. Sin. 4, 617 (1995).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Division of Science and TechnologyUniversity of EducationLahorePakistan

Personalised recommendations