The problem of the universal density functional and the density matrix functional theory

  • V. B. BobrovEmail author
  • S. A. Trigger
Electronic Properties of Solid


The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.


Density Functional Theory Density Matrix External Field Inhomogeneous Density Spin Quantum Number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    V. B. Bobrov and S. A. Trigger, Europhys. Lett. 94, 33001 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    S. Lundqvist and N. H. March, Theory of the Inhomogeneous Electron Gas (Plenum, New York, 1983).CrossRefGoogle Scholar
  5. 5.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, Oxford, 1977).Google Scholar
  7. 7.
    C. F. Weizsäcker,, Z. Phys. 96, 431 (1935).ADSCrossRefGoogle Scholar
  8. 8.
    J. L. Gazquez and J. Robles, J. Chem. Phys. 76, 1467 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).Google Scholar
  10. 10.
    H. Eschrig, The Fundamentals of Density Functional Theory (Teubner, Stuttgart, 1996).CrossRefzbMATHGoogle Scholar
  11. 11.
    R. A. Donelly and R. G. Parr, J. Chem. Phys. 69, 4431 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    T. L. Gilbert, Phys. Rev. B: Solid State 12, 2111 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    A. M. K. Müller, Phys. Lett. A 105, 446 (1984).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K. Pernal, Phys. Rev. Lett. 94, 233002 (2005); K. Pernal, Phys. Rev. A: At., Mol., Opt. Phys. 81, 052511 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    N. N. Lathiotakis, N. I. Gidopoulos, and N. Helbig, J. Chem. Phys. 132, 084105 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. Ya. Amusia, A. Z. Msezane, V. R. Shaginyan, and D. Sokolovsky, Phys. Lett. A 330, 10 (2004).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.National Research University “MEPhI,”MoscowRussia
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations