Advertisement

Spontaneous radiation of a chiral molecule located near a half-space of a bi-isotropic material

  • D. V. Guzatov
  • V. V. Klimov
  • N. S. Poprukailo
Atoms, Molecules, Optics

Abstract

Analytical expressions for the rate of spontaneous emission from a chiral (optically active) molecule located near a half-space occupied by a chiral (bi-isotropic) material have been obtained and analyzed in detail. It is established that the rates of spontaneous emission from the “right” and “left” enantiomers of molecules occurring near the chiral medium may significantly differ in cases of chiral materials with (i) both negative dielectric permittivity and magnetic permeability (DNG metamaterial) and (ii) negative permeability and positive permittivity (MNG metamaterial). Based on this phenomenon, DMG and MNG metamaterials can be used to create devices capable of separating right and left enantiomers in racemic mixtures.

Keywords

Dielectric Permittivity Half Space Spontaneous Emission Magnetic Permeability Magnetic Dipole Moment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston, 1994).Google Scholar
  2. 2.
    J. B. Pendry, Science (Washington) 306, 1353 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, Appl. Phys. Lett. 94, 151112 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B: Condens. Matter 79, 035407 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science (Washington) 325, 1513 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    V. Klimov, S. Sun, and G.-Y. Guo, Opt. Express 20, 13071 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. Sommerfeld, Ann. Phys. (Weinheim) 28, 665 (1909).ADSCrossRefGoogle Scholar
  9. 9.
    W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).Google Scholar
  10. 10.
    K. Li, Electromagnetic Fields in Stratified Media (Zhejiang University Press, Hangzhou, China, 2009).CrossRefzbMATHGoogle Scholar
  11. 11.
    V. Klimov, J. Baudon, and M. Ducloy, Europhys. Lett. 94, 20006 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    V. Klimov, JETP Lett. 89(5), 229 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A. B. Petrin, JETP Lett. 87(9), 464 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    X.-Q. Zhu, W.-Y. Pan, and B.-R. Guan, Prog. Electromagn. Res. 6, 123 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Ra’di, S. Nikmehr, and S. Hosseinzadeh, Prog. Electromagn. Res. 116, 107 (2011).CrossRefGoogle Scholar
  16. 16.
    S. M. Ali, T. M. Habashy, and J. A. Kong, J. Opt. Soc. Am. A 9, 413 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    W. Ren, J. Appl. Phys. 75, 30 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, J. Phys. A: Math. Theor. 40, 5751 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    R. R. Chance, A. Prock, and A. Silbey, Adv. Chem. Phys. 37, 1 (1978).Google Scholar
  20. 20.
    G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    J. M. Wylie and J. E. Sipe, Phys. Rev. A: At., Mol., Opt. Phys. 30, 1185 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    R. Ruppin and O. J. F. Martin, J. Chem. Phys. 121, 11358 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    J.-P. Xu, Y.-P. Yang, Q. Lin, and S.-Y. Zhu, Phys. Rev. A: At., Mol., Opt. Phys. 79, 043812 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, Phys. Rev. B: Condens. Matter 80, 195106 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Klimov, D. V. Guzatov, and M. Ducloy, Europhys. Lett. 97, 47004 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    A. A. Golubkov and V. A. Makarov, Phys.—Usp. 38(3), 325 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    A. A. Golubkov and V. A. Makarov, Izv. Akad. Nauk, Ser. Fiz. 59(12), 93 (1995).Google Scholar
  28. 28.
    P. Drude, Lehrbuch der Optik (Verlag von S. Hirzel, Leipzig, 1906).zbMATHGoogle Scholar
  29. 29.
    M. Born, Optik (Springer-Verlag, Berlin, 1972).CrossRefGoogle Scholar
  30. 30.
    B. V. Bokut’, A. N. Serdyukov, and F. I. Fedorov, Sov. Phys. Crystallogr. 15(5), 871 (1970).Google Scholar
  31. 31.
    C. F. Bohren, Chem. Phys. Lett. 29, 458 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  33. 33.
    A. Alu and N. Engheta, IEEE Trans. Microwave Theory Tech. 52, 199 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog. Phys. 70, 1 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore 2012).Google Scholar
  36. 36.
    L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1989) [in Russian].Google Scholar
  37. 37.
    W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977).ADSCrossRefGoogle Scholar
  38. 38.
    D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).ADSCrossRefGoogle Scholar
  40. 40.
    Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).Google Scholar
  41. 41.
    J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).zbMATHGoogle Scholar
  42. 42.
    A. P. Vinogradov, Electrodynamics of Composite Materials (URSS, Moscow, 2001) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. V. Guzatov
    • 1
  • V. V. Klimov
    • 2
  • N. S. Poprukailo
    • 1
  1. 1.Yanka Kupala Grodno State UniversityGrodnoBelarus
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations