Advertisement

Thermal melting and ablation of silicon by femtosecond laser radiation

  • A. A. Ionin
  • S. I. KudryashovEmail author
  • L. V. Seleznev
  • D. V. Sinitsyn
  • A. F. Bunkin
  • V. N. Lednev
  • S. M. Pershin
Atoms, Molecules, Optics

Abstract

The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

Keywords

Femtosecond Laser Crater Depth Femtosecond Laser Ablation Thermal Melting Spalled Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, 2000).Google Scholar
  2. 2.
    M. Ishino, A. Ya. Faenov, M. Tanaka, N. Hasegawa, M. Nishikino, S. Tamotsu, T. A. Pikuz, N. A. Inogamov, V. V. Zhakhovsky, I. Yu. Skobelev, V. E. Fortov, V. A. Khohlov, V. V. Shepelev, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, and T. Kawachi, J. Appl. Phys. 109, 013504 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 94(4), 266 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    M. C. Downer, R. L. Fork, and C. V. Shank, J. Opt. Soc. Am. B 2, 595 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, Phys. Rev. Lett. 67, 1023 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, Appl. Phys. A: Solids Surf. 53, 227 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    J. Bonse, Appl. Phys. A: Mater. Sci. Process. 84, 63 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    X. Y. Wang and M. C. Downer, Opt. Lett. 17, 1450 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    K. Sokolowski-Tinten, S. I. Kudryashov, V. Temnov, J. Bialkowski, D. von der Linde, A. Cavalleri, H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, Springer Ser. Chem. Phys. 66, 425 (2000).CrossRefGoogle Scholar
  11. 11.
    T. Y. Choi and C. P. Grigoropoulos, J. Appl. Phys. 92, 4818 (2002).Google Scholar
  12. 12.
    J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, J. Appl. Phys. 103, 054910 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, JETP 107(1), 1 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, Proc. SPIE-Int. Soc. Opt. Eng. 3343, 46 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    S. I. Ashitkov, M. B. Agranat, G. I. Kanel’, P. S. Komarov, and V. E. Fortov, JETP Lett. 92(8), 516 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, V. A. Khokhlov, V. V. Shepelev, P. S. Komarov, A. V. Ovchinnikov, D. S. Sitnikov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 51, 367 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, Appl. Phys. A: Mater. Sci. Process. 80, 237 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, Appl. Surf. Sci. 197, 720 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    I. Mingareev and A. Horn, Appl. Phys. A: Mater. Sci. Process. 92, 917 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, Phys. Rev. Lett. 99, 167602 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    R. K. Raman, Y. Murooka, C. Ruan, T. Yang, S. Berber, and D. Tománek, Phys. Rev. Lett. 101, 077401 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Miyamoto, H. Zhang, and D. Tomanek, Phys. Rev. Lett. 104, 208302 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    R. Nüske, C. von Korff Schmising, A. Jurgilaitis, H. Enquist, H. Navirian, P. Sondhauss, and J. Larsson, Rev. Sci. Instrum. 81, 013106 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    G. Sciani and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    A. M. Lindenberg, S. Engemann, K. J. Gaffney, K. Sokolowski-Tinten, J. Larsson, P. B. Hillyard, D.A. Reis, D. M. Fritz, J. Arthur, R. A. Akre, M. J. George, A. Deb, P. H. Bucksbaum, J. Hajdu, D. A. Meyer, M. Nicoul, C. Blome, Th. Tschentscher, A. L. Cavalieri, R. W. Falcone, S. H. Lee, R. Pahl, J. Rudati, P. H. Fuoss, A. J. Nelson, P. Krejcik, D. P. Siddons, P. Lorazo, and J. B. Hastings, Phys. Rev. Lett. 100, 135502 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, Phys. Rev. Lett. 100, 035501 (2008); F. Dorchies, A. Levy, C. Coyon, P. Combis, D. Descamps, C. Fourment, M. Harmand, S. Hulin, P. M. Leguay, S. Petit, O. Peyrusse, and J. J. Santos, Phys. Rev. Lett. 107, 245006 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).Google Scholar
  28. 28.
    L. Zhigilei, Z. Lin, and D. S. Ivanov, J. Phys. Chem. C 113, 11892 (2009).CrossRefGoogle Scholar
  29. 29.
    E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A: Mater. Sci. Process. 79, 1643 (2004).ADSGoogle Scholar
  30. 30.
    P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. B: Condens. Matter 73, 134108 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, Phys. Rev. B: Condens. Matter 78, 045437 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, Phys. Rev. Lett. 87, 225701 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    H. Enquist, H. Navirian, T. N. Hansen, A. M. Lindenberg, P. Sondhauss, O. Synnergren, J. S. Wark, and J. Larsson, Phys. Rev. Lett. 98, 225502 (2007); M. Nicoul, V. Shymanovich, A. Tarasevich, D. von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 90(3), 181 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. 109–110, 1 (1997).CrossRefGoogle Scholar
  37. 37.
    S. I. Kudryashov and V. I. Emel’yanov, JETP 94(1), 94 (2002).ADSCrossRefGoogle Scholar
  38. 38.
    Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, Florida, United States, 1998).Google Scholar
  39. 39.
    A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 94(1), 34 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).Google Scholar
  41. 41.
    K. M. Shvarev, B. A. Baum, and N. V. Gel’d, Sov. Phys. Solid State 16(11), 2111 (1974).Google Scholar
  42. 42.
    H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, Phys. Rev. Lett. 60, 1438 (1988); K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, Phys. Rev. B: Condens. Matter 51, 14186 (1995).ADSCrossRefGoogle Scholar
  43. 43.
    B. C. Gundrum, R. S. Averback, and D. G. Cahill, Appl. Phys. Lett. 91, 011906 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, Phys. Rev. Lett. 91, 157403 (2003).ADSCrossRefGoogle Scholar
  45. 45.
    M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986); A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, J. Appl. Phys. 85, 3301 (1999).ADSCrossRefGoogle Scholar
  46. 46.
    P. Yu. M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer-Verlag, Berlin, 1996; Fizmatlit, Moscow, 2002).zbMATHGoogle Scholar
  47. 47.
    E. Yu. Tonkov, Phase Transformations of Elements under High Pressure (Metallurgiya, Moscow, 1988; CRC Press, Boca Raton, Florida, United States, 2004).Google Scholar
  48. 48.
    N. M. Keita and S. Steinemann, Phys. Lett. A 72, 153 (1979).ADSCrossRefGoogle Scholar
  49. 49.
    V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991; American Institute of Physics, New York, 1993).Google Scholar
  50. 50.
    P. H. Bucksbaum and J. Bokor, Phys. Rev. Lett. 53, 182 (1984); K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, Phys. Rev. B: Condens. Matter 58, R11805 (1998); W.-L. Chan, R. S. Averback, D. G. Cahill, and A. Lagoutchev, Phys. Rev. B: Condens. Matter 78, 214107 (2008).ADSCrossRefGoogle Scholar
  51. 51.
    D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, J. Appl. Phys. 99, 083101 (2006).ADSCrossRefGoogle Scholar
  52. 52.
    S. Lee, D. Yang, and S. Nikumb, Appl. Surf. Sci. 254, 2996 (2008).ADSCrossRefGoogle Scholar
  53. 53.
    D. H. Reitze, T. R. Zhang, Wm. M. Wood, and M. C. Downer, J. Opt. Soc. Am. B 7(1), 84 (1990).ADSCrossRefGoogle Scholar
  54. 54.
    K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B: Condens. Matter 61, 2648 (2000); M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, A. V. Ovchinnikov, P. S. Kondratenko, D. S. Sitnikov, and V. E. Fortov, JETP Lett. 83 (11), 501 (2006).ADSCrossRefGoogle Scholar
  55. 55.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and Dietrich von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).ADSCrossRefGoogle Scholar
  56. 56.
    V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, JETP Lett. 87(8), 423 (2008).ADSCrossRefGoogle Scholar
  57. 57.
    O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, London, 1955).Google Scholar
  58. 58.
    B. Rethfeld, K. Sokolowski-Tinten, V. V. Temnov, S. I. Kudryashov, J. Bialkowski, A. Cavalleri, and D. von der Linde, Proc. SPIE-Int. Soc. Opt. Eng. 4423, 186 (2001).ADSCrossRefGoogle Scholar
  59. 59.
    D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 067403 (2003).CrossRefGoogle Scholar
  60. 60.
    S. I. Kudryashov, A. A. Ionin, S. V. Makarov, N. N. Mel’nik, L. V. Seleznev, and D. V. Sinitsyn, AIP Conf. Proc. 1464, 244 (2012).ADSCrossRefGoogle Scholar
  61. 61.
    S. I. Kudryashov, Proc. SPIE-Int. Soc. Opt. Eng. 5448, 1171 (2004).ADSCrossRefGoogle Scholar
  62. 62.
    S. I. Kudryashov, M. Kandyla, C. Roeser, and E. Mazur, Phys. Rev. B: Condens. Matter 75, 085207 (2007).ADSCrossRefGoogle Scholar
  63. 63.
    R. Taft and J. Stareck, J. Phys. Chem. 34, 2307 (1930).CrossRefGoogle Scholar
  64. 64.
    D. S. Ivanov and L. V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007).ADSCrossRefGoogle Scholar
  65. 65.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. I. Anisimov, Phys. Rev. B: Condens. Matter 65, 092103 (2002); X.-M. Bai and M. Li, Phys. Rev. B: Condens. Matter 77, 134109 (2008); G. Rastelli and E. Capelluti, Phys. Rev. B: Condens. Matter 84, 184305 (2011).ADSCrossRefGoogle Scholar
  66. 66.
    S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Yu. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, JETP Lett. 95(4), 176 (2012).ADSCrossRefGoogle Scholar
  67. 67.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).ADSCrossRefGoogle Scholar
  68. 68.
    S. I. Kudryashov, Candidate’s Dissertation in Mathematical Physics (Moscow State University, Moscow, 1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Ionin
    • 1
  • S. I. Kudryashov
    • 1
    Email author
  • L. V. Seleznev
    • 1
  • D. V. Sinitsyn
    • 1
  • A. F. Bunkin
    • 2
  • V. N. Lednev
    • 2
  • S. M. Pershin
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations