Advertisement

Correlation properties of entangled multiphoton states and Bernstein’s paradox

  • A. S. Chirkin
  • O. V. Belyaeva
  • A. V. Belinsky
Atoms, Molecules, Optics

Abstract

A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein’s paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

Keywords

Entangle State Cluster State Qubit State Polarization Beam Splitter Mixed Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Belinskii and D. N. Klyshko, Phys.—Usp. 36(8), 653 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    G. S. Greenstein and A. G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett, London, 2005; Intellekt, Moscow, 2008).Google Scholar
  3. 3.
    J. Preskill, Quantum Information and Computation (California Institute of Technology, Pasadena, California, United States, 1998; Institute of Computer Science, Moscow, 2008).Google Scholar
  4. 4.
    Quantum Imaging, Ed. by M. I. Kolobov (Springer-Verlag, Berlin, 2006; Fizmatlit, Moscow, 2009).Google Scholar
  5. 5.
    Quantum Information with Continuous Variables of Atoms and Light, Ed. by N. J. Cerf, G. Leuchs, and E. S. Polzik (Imperial College Press, London, 2007).zbMATHGoogle Scholar
  6. 6.
    H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010).zbMATHGoogle Scholar
  7. 7.
    A. Furusawa and P. van Loock, Quantum Teleportation and Entanglement (Wiley, Weinheim, Germany, 2011).CrossRefGoogle Scholar
  8. 8.
    L. Henderson and V. Verdral, J. Phys. A: Math. Gen. 34, 6899 (2001).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    V. Verdral, Phys. Rev. Lett. 90, 050401 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    C. Yu and H. Song, Phys. Rev. A: At., Mol., Opt. Phys. 73, 022325 (2006).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    D. L. Zhou, B. Zeng, Z. Xu, and L. You, Phys. Rev. A: At., Mol., Opt. Phys. 74, 052110 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, and A. Winter, Phys. Rev. Lett. 101, 070502 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    A. Streltsov, H. Kampermann, and D. Bruss, Phys. Rev. Lett. 107, 170502 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, arXiv:quant-ph1112.6238v1.Google Scholar
  16. 16.
    J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weifurter, A. Zeilinger, and M. Zukovski, Rev. Mod. Phys. 84, 777 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Belinskii and D. N. Klyshko, JETP 75(4), 606 (1994).Google Scholar
  18. 18.
    V. P. Karassiov, JETP Lett. 84(12), 640 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    V. P. Karassiov and S. P. Kulik, JETP 104(1), 30 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 2008).zbMATHCrossRefGoogle Scholar
  21. 21.
    V. N. Gorbachev, S. P. Kulik, and A. I. Trubilko, JETP 107(3), 384 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    A. N. Malakhov, Cumulant Analysis of Random Non-Gaussian Processes and Their Transformations (Sovetskoe Radio, Moscow, 1978) [in Russian].Google Scholar
  23. 23.
    S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Statistical Radiophysics and Optics: Random Vibrations and Waves in Linear Systems (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  24. 24.
    J. Stoyanov, Counterexamples in Probability (Wiley, New York, 1997; Faktorial, Moscow, 1999).zbMATHGoogle Scholar
  25. 25.
    I. S. Zhukova, G. A. Malinovskaya, and A. I. Saichev, Modern Methods of Analysis of Random Processes and Fields (Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia, 2006) [in Russian].Google Scholar
  26. 26.
    A. V. Belinskii, JETP Lett. 54(1), 11 (1991).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. S. Chirkin
    • 1
  • O. V. Belyaeva
    • 1
  • A. V. Belinsky
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations