Spatial coherence of polaritons in a 1D channel

  • I. G. Savenko
  • I. V. Iorsh
  • M. A. Kaliteevski
  • I. A. Shelykh
Atoms, Molecules, Optics

Abstract

We analyze time evolution of spatial coherence of a polariton ensemble in a quantum wire (1D channel) under constant uniform resonant pumping. Using the theoretical approach based on the Lindblad equation for a one-particle density matrix, which takes into account the polariton-phonon and excitonexciton interactions, we study the behavior of the first-order coherence function g1 for various pump intensities and temperatures in the range of 1–20 K. Bistability and hysteresis in the dependence of the first-order coherence function on the pump intensity is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, Oxford, 2006).Google Scholar
  2. 2.
    S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    D. D. Solnyshkov, T. Weiss, G. Malpuech, and N. A. Gippius, Appl. Phys. Lett. 99, 111110 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature (London) 443, 409 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science (Washington) 316, 1007 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. Imamoglu, R. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A: At., Mol., Opt. Phys. 53, (1996).Google Scholar
  7. 7.
    S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 101, 136409 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    P. Hohenberg, Phys. Rev. 158, 383 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, Phys. Rev. Lett. 94, 187401 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    J. Kasprzak, D. D. Solnyshkov, R. Andre, Le Si Dang, and G. Malpuech, Phys. Rev. Lett. 101, 146404 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    L. V. Butov and A. V. Kavokin, Nat. Photonics 6, 2 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    Hui Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Science (Washington) 4, 199 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    F. P. Laussy, G. Malpuech, A. Kavokin, and P. Bigenwald, Phys. Rev. Lett. 93, 016402 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    F. Laussy, I. A. Shelykh, A. V. Kavokin, and G. Malpuech, Phys. Rev. B: Condens. Matter 73, 035315 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    D. Sarchi and V. Savona, Phys. Rev. B: Condens. Matter 75, 115326 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    T. D. Doan, H. T. Cao, D. B. T. Thoai, and H. Haug, Phys. Rev. B: Condens. Matter 78, 205306 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    A. Baas, J.-P. Karr, M. Romanelli, A. Bramati, and E. Giacobino, Phys. Rev. Lett. 96, 176401 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, Phys. Rev. Lett. 99, 126403 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    G. Nardin, K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, R. André, Le Si Dang, B. Pietka, and B. Deveaud-Plédran, Phys. Rev. Lett. 103, 256402 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    I. Carussotto and C. Ciuti, Phys. Rev. Lett. 93, 166401 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    I. A. Shelykh, Y. G. Rubo, G. Malpuech, D. D. Solnyshkov, and A. Kavokin, Phys. Rev. Lett. 97, 066402 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    D. Porras, C. Ciuti, J. J. Baumberg, and C. Tejedor, Phys. Rev. B: Condens. Matter 66, 085304 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    T. D. Doan, H. T. Cao, D. B. T. Thoai, and H. Haug, Phys. Rev. B: Condens. Matter 72, 085301 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    I. G. Savenko, E. B. Magnusson, and I. A. Shelykh, Phys. Rev. B: Condens. Matter 83, 165316 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaĭtre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, Nat. Phys. 6, 860 (2010).CrossRefGoogle Scholar
  28. 28.
    G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Nat. Phys. 8, 190 (2012).CrossRefGoogle Scholar
  29. 29.
    A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and Le Si Dang, Phys. Rev. B: Condens. Matter 83, 041302 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    T. C. H. Liew, I. A. Shelykh, and G. Malpuech, Physica E (Amsterdam) 43, 1543 (2011); M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, Appl. Phys. Lett. 95, 251108 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, Phys. Rev. B: Condens. Matter 82, 033302 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford University Press, Oxford, 2006).Google Scholar
  33. 33.
    E. B. Magnusson, I. G. Savenko, and I. A. Shelykh, Phys. Rev. B: Condens. Matter 84, 195306 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    F. Tassone and Y. Yamamoto, Phys. Rev. B: Condens. Matter 59, 16 (1999).CrossRefGoogle Scholar
  35. 35.
    C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and P. Schwendimann, Phys. Rev. B: Condens. Matter 53, 15834 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    D. D. Solnyshkov, I. A. Shelykh, N. A. Gippius, A. V. Kavokin, and G. Malpuech, Phys. Rev. B: Condens. Matter 77, 045314 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    H. Carmichael, An Open Systems Approach to Quantum Optics: Lectures Presented at the Universite Libre De Bruxelles, October 28–November 4, 1991 in Lecture Notes in Physics New Series M (Springer-Verlag, New York, 1993).Google Scholar
  38. 38.
    N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    A. Baas, J.-Ph. Karr, M. Romanelli, A. Bramati, and E. Giacobino, Phys. Rev. B: Condens. Matter 70, 161307(R) (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. G. Savenko
    • 1
    • 2
    • 4
  • I. V. Iorsh
    • 3
  • M. A. Kaliteevski
    • 1
    • 5
  • I. A. Shelykh
    • 2
    • 4
  1. 1.Academic University, Research and Education Center of NanotechnologiesRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Science InstituteUniversity of IcelandDunhagi, ReykjavikIceland
  3. 3.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  4. 4.Division of Physics and Applied PhysicNanyang Technological UniversitySingaporeSingapore
  5. 5.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations