Advertisement

Journal of Experimental and Theoretical Physics

, Volume 115, Issue 6, pp 1042–1047 | Cite as

Phase transitions in the two-dimensional ferro- and antiferromagnetic potts models on a triangular lattice

  • A. K. Murtazaev
  • A. B. BabaevEmail author
Order, Disorder, and Phase Transition in Condensed System

Abstract

The phase transitions in the two-dimensional ferro- and antiferromagnetic Potts models with q = 3 states of spin on a triangular lattice are studied using cluster algorithms and the classical Monte Carlo method. Systems with linear sizes L = 20–120 are considered. The method of fourth-order Binder cumulants and histogram analysis are used to discover that a second-order phase transition occurs in the ferromagnetic Potts model and a first-order phase transition takes place in the antiferromagnetic Potts model. The static critical indices of heat capacity (α), magnetic susceptibility (γ), magnetization (β), and correlation radius index (ν) are calculated for the ferromagnetic Potts model using the finite-size scaling theory.

Keywords

Heat Capacity Monte Carlo Potts Model Order Phase Transition Linear Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Maleyev, Phys.—Usp. 45(6), 569 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    F. A. Kassan-Ogly, V. E. Naish, and I. V. Sagaradze, Phase Transitions 49, 89 (1994).CrossRefGoogle Scholar
  3. 3.
    F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    R. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982; Mir, Moscow, 1985).zbMATHGoogle Scholar
  5. 5.
    W. Zhang and Y. Deng, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 031103 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    A. N. Ermilov, Sov. J. Part. Nucl. 20(6), 631 (1989).MathSciNetGoogle Scholar
  7. 7.
    M. Loulidi, Physica A (Amsterdam) 287, 177 (2000).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    A. J. Guttmann and I. G. Enting, J. Phys. A: Math. Gen. 27, 5801 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    G. S. Grest, J. Phys. A: Math. Gen. 14, L217 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    J. Adler, A. Brand, W. Janke, and S. Shmulyian, J. Phys. A: Math. Gen. 28, 5117 (1995).ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    M. Schick and R. Griffiths, J. Phys. A: Math. Gen. 10, 2123 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    U. Wolff, Phys. Lett. 62, 361 (1989).CrossRefGoogle Scholar
  13. 13.
    J.-S. Wang and R. H. Swendsen, Physica A (Amsterdam) 167, 565 (1990).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    D. Loison, Phys. Lett. A 257, 83 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, and A. S. Krinitsin, JETP 105(2), 371 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. K. Murtazaev, I. K. Kamilov, and A. B. Babaev, JETP 99(6), 1201 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    A. K. Murtazaev, A. B. Babaev, and G. Ya. Aznaurova, JETP 109(3), 442 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    A. K. Murtazaev, A. B. Babaev, and G. Ya. Aznaurova, Phys. Solid State 50(4), 733 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    A. K. Murtazaev and A. B. Babaev, J. Magn. Magn. Mater. 321, 2630 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. K. Murtazaev, A. B. Babaev, and G. Ya. Aznaurova, Low Temp. Phys. 37(2), 134 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    P. Peczac, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B: Condens. Matter 43, 6087 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Saito, J. Phys. A: Math. Gen. 15, 1885 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    K. Binder, Phys. Rev. Lett. 47, 693 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    K. Eichhorn and K. Binder, J. Phys.: Condens. Matter 8, 5209 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    D. Loison and K. D. Schotte, Eur. Phys. J. B 5, 735 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    F. Wang and D. P. Landau, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 056101 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).ADSCrossRefGoogle Scholar
  28. 28.
    S. Ma, Modern Theory of Critical Phenomena (Perseus Books, New York, 1976; Mir, Moscow, 1980).Google Scholar
  29. 29.
    A. Mailhot, M. L. Plumer, and A. Caille, Phys. Rev. B: Condens. Matter 50, 6854 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    A. K. Murtazaev, I. K. Kamilov, and M. A. Magomedov, JETP 93(6), 1330 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    R. J. Baxter, J. Phys. A: Math. Gen. 13, L61 (1980).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    R. J. Baxter and S. K. Tsang, J. Phys. A: Math. Gen. 13, 1023 (1980).ADSCrossRefGoogle Scholar
  33. 33.
    R. J. Baxter and P. A. Pearce, J. Phys. A: Math. Gen. 15, 897 (1982).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Physics, Dagestan Scientific CenterRussian Academy of SciencesMakhachkalaDagestan, Russia
  2. 2.Dagestan State UniversityMakhachkalaDagestan, Russia
  3. 3.Dagestan State Pedagogical UniversityMakhachkalaDagestan, Russia

Personalised recommendations