Advertisement

Journal of Experimental and Theoretical Physics

, Volume 115, Issue 6, pp 1093–1099 | Cite as

Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

  • A. S. Belov
  • G. A. Markov
  • A. O. Ryabov
  • M. Parrot
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

Keywords

Radiation Belt Ionospheric Region Geomagnetic Field Line Whistler Mode Wave Satellite Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Stubbe, J. Atmos. Terr. Phys. 58, 349 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    D. M. Wright, J. A. Davies, T. R. Robinson, P. J. Chapman, T. K. Yeoman, E. C. Thomas, M. Lester, S. W. H. Cowley, A. J. Stocker, R. B. Horne, and F. Honary, Ann. Geophys. 18, 1248 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Gurevich, Phys.-Usp. 50(11), 1091 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. L. Frolov, V. O. Rapoport, G. P. Komrakov, A. S. Belov, G. A. Markov, M. Parrot, J. L. Rauch, and E. V. Mishin, JETP Lett. 88(12), 790 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    G. M. Milikh, K. Papadopoulos, and H. Shroff, Geophys. Res. Lett. 35, L17104 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    M. Parrot, J. A. Sauvaud, J. J. Berthelier, and J. P. Lebreton, Geophys. Res. Lett. 34, L11111 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    U. S. Inan, H. C. Chang, and R. A. Helliwell, J. Geophys. Res. 89, 2891 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    K. Graf, U. S. Inan, D. Piddyachiy, P. Kulkarni, M. Parrot, and J. A. Sauvaud, J. Geophys. Res., Space Phys. 114, A07205 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    T. F. Bell, K. Graf, U. S. Inan, D. Piddyachiy, and M. Parrot, Geophys. Res. Lett. 38, L11103 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    E. V. Mishin, M. J. Starks, G. P. Ginet, and R. A. Quinn, Geophys. Res. Lett. 37, L04101 (2010).CrossRefGoogle Scholar
  11. 11.
    T. F. Bell and H. D. Ngo, J. Geophys. Res. 95, 149 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    P. A. Bespalov and V. Yu. Trakhtengerts, Rev. Plasma Phys. 10, 155 (1986).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. S. Belov
    • 1
  • G. A. Markov
    • 1
  • A. O. Ryabov
    • 1
  • M. Parrot
    • 2
  1. 1.Lobachevsky Nizhni Novgorod State UniversityNizhni NovgorodRussia
  2. 2.Environment Physics and Chemistry LaboratoryOrleansFrance

Personalised recommendations