Journal of Experimental and Theoretical Physics

, Volume 115, Issue 6, pp 1062–1067 | Cite as

Negative differential conductance in InAs wire based double quantum dot induced by a charged AFM tip

  • A. A. Zhukov
  • Ch. Volk
  • A. Winden
  • H. Hardtdegen
  • Th. Schäpers
Electronic Properties of Solid

Abstract

We investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots on a decrease of the negative differential conductance is investigated in detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Ford, J. C. Ho, Y.-L. Chueh, Y.-C. Tseng, Z. Fan, J. Guo, J. Bokor, and A. Javey, Nano Lett. 9, 360 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 83, 2052 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    M. Scheffler, S. Nadj-Perge, L. P. Kouwenhoven, M. T. Borgström, and E. P. A. M. Bakkers, J. Appl. Phys. 106, 124303 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    C. Blömers, M. I. Lepsa, M. Luysberg, D. Grützmacher, H. Lüth, and Th. Schäpers, Nano Lett. 11, 3550 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    S. Wirths, K. Weis, A. Winden, K. Sladek, C. Volk, S. Alagha, T. E. Weirich, M. von der Ahe, H. Hardtdegen, H. Lüth, N. Demarina, D. Grützmacher, and Th. Schäpers, J. Appl. Phys. 110, 053709 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    Th. Richter, Ch. Blömers, H. Lüth, R. Calarco, M. Indlekofer, M. Marso, and T. Schäpers, Nano Lett. 8, 2834 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein, Phys. Rev. B: Condens. Matter 76, 161405(R) (2007).ADSCrossRefGoogle Scholar
  8. 8.
    A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein, Phys. Rev. B: Condens. Matter 75, 241407(R) (2007).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Schäpers, Physica E (Amsterdam) 44, 690 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 7, 2559 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Schäpers, JETP Lett. 93(1), 10 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    R. Crook, C. G. Smith, A. C. Graham, I. Farrer, H. E. Beere, and D. A. Ritchie, Phys. Rev. Lett. 91, 246803 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. Pioda, S. Ki in, T. Ihn, M. Sigrist, A. Fuhrer, K. Ensslin, A. Weichselbaum, S. E. Ulloa, M. Reinwald, and W. Wegscheider, Phys. Rev. Lett. 93, 216801 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    P. Fallahi, A. C. Bleszynski, R. M. Westervelt, J. Huang, J. D. Walls, E. J. Heller, M. Hanson, and A. C. Gossard, Nano Lett. 5, 223 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    S. Schnez, J. Güttinger, M. Huefner, C. Stampfer, K. Ensslin, and T. Ihn, Phys. Rev. B: Condens. Matter 82, 165445 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 69, 1592 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    J. Weis, R. J. Haug, K. V. Klitzing, and K. Ploog, Phys. Rev. Lett. 71, 4019 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    H. Nakashima and K. Uozumi, J. Appl. Phys. Jpn. 34, L1659 (1995); H. Nakashima and K. Uozumi, J. Vac. Sci. Technol., B 15, 1411 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    C. P. Heij, D. C. Dixon, P. Hadley, and J. E. Mooij, Appl. Phys. Lett. 74, 1042 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    A. Krieg and X. L. Huang, Appl. Phys. Lett. 86, 061113 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    F. Capasso, S. Sen, and A. C. Gossard, IEEE Electron Device Lett. EDL-7, 573 (1986).CrossRefGoogle Scholar
  22. 22.
    M. Akabori, K. Sladek, H. Hardtdegen, Th. Schäpers, and D. Grützmacher, J. Cryst. Growth 311, 3813 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    A. A. Zhukov, Instrum. Exp. Tech. 51(1), 130 (2008).MathSciNetCrossRefGoogle Scholar
  24. 24.
    K. Ishibashi, M. Suzuki, T. Ida, and Y. Aoyagi, Appl. Phys. Lett. 79, 1864 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    J. Fransson and O. Eriksson, Phys. Rev. B: Condens. Matter 70, 085301 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Zhukov
    • 1
  • Ch. Volk
    • 2
    • 3
  • A. Winden
    • 2
    • 3
  • H. Hardtdegen
    • 2
    • 3
  • Th. Schäpers
    • 2
    • 3
    • 4
  1. 1.Institute of Solid State PhysicsRussian Academy of ScienceChernogolovka, Moscow oblastRussia
  2. 2.Peter Grünberg Institut (PGI-9)JülichGermany
  3. 3.Forschungszentrum JülichJARA-Fundamentals of Future Information TechnologyJülichGermany
  4. 4.II. Physikalisches InstitutRWTH Aachen UniversityAachenGermany

Personalised recommendations