Advertisement

Journal of Experimental and Theoretical Physics

, Volume 115, Issue 6, pp 1048–1054 | Cite as

Computer simulation of the energy gap in ZnO- and TiO2-based semiconductor photocatalysts

  • N. A. SkorikovEmail author
  • M. A. Korotin
  • E. Z. Kurmaev
  • S. O. Cholakh
Electronic Properties of Solid

Abstract

Ab initio calculations of the electronic structures of binary ZnO- and TiO2-based oxides are performed to search for optimum dopants for efficient absorption of the visible part of solar radiation. Light elements B, C, and N are chosen for anion substitution. Cation substitution is simulated by 3d elements (Cr, Mn, Fe, Co) and heavy metals (Sn, Sb, Pb, Bi). The electronic structures are calculated by the full-potential linearized augmented plane wave method using the modified Becke-Johnson exchange-correlation potential. Doping is simulated by calculating supercells Zn15D1O16, Zn16O15D1, Ti15D1O32, and Ti8O15D1, where one-sixteenth of the metal (Ti, Zn) or oxygen atoms is replaced by dopant atoms. Carbon and antimony are found to be most effective dopants for ZnO: they form an energy gap ΔE = 1.78 and 1.67 eV, respectively. For TiO2, nitrogen is the most effective dopant (ΔE = 1.76 eV).

Keywords

Orbital Energy Impurity Band Conduction Band Bottom Anion Doping Effective Dopant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. (Washington) 95, 69 (1995).CrossRefGoogle Scholar
  3. 3.
    X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).CrossRefGoogle Scholar
  4. 4.
    J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, Jr., and J. V. Smith, J. Am. Chem. Soc. 109, 3639 (1987).CrossRefGoogle Scholar
  5. 5.
    W. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem. 98, 13669 (1994).CrossRefGoogle Scholar
  6. 6.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science (Washington) 293, 269 (2001).CrossRefGoogle Scholar
  7. 7.
    K. Nishijima, B. Ohtani, X. L. Yan, T. Kamai, T. Chiyoya, T. Tsubota, N. Murakami, and T. Ohno, Chem. Phys. 339, 64 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    H. Irie, Y. Watanabe, and K. Hashimoto, Chem. Lett. 32, 772 (2003).CrossRefGoogle Scholar
  9. 9.
    F.-Ch. Zhang, Zh.-Y. Zhang, W.-H. Zhang, J.-F. Yan, and J.-N. Yun, Chin. Phys. Lett. 25, 3735 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    X. Yu, Ch. Li, H. Tang, Y. Ling, T.-A. Tang, Q. Wu, and J. Kong, Comput. Mater. Sci. 49, 430 (2010).CrossRefGoogle Scholar
  11. 11.
    R. Long, Y. Dai, M. Guo, and B. Huang, J. Phys. Chem. C 113, 650 (2009).CrossRefGoogle Scholar
  12. 12.
    J. Graciani, L. J. Alvarez, J. A. Rodriguez, and J. F. Sanz, J. Phys. Chem. C 112, 2624 (2008).CrossRefGoogle Scholar
  13. 13.
    V. M. Zainullina, V. P. Zhukov, M. A. Korotin, and E. V. Polyakov, Phys. Solid State 53(7), 1353 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, J. Phys. Chem. Solids 63, 1909 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    P. Palacios, I. Aguilera, and P. Wahnón, Thin Solid Films 518(16), 4568 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    D. Iu an, R. Knut, B. Sanyal, O. Karis, O. Eriksson, V.A. Coleman, G. Westin, J. M. Wikberg, and P. Svedlindh, Phys. Rev. B: Condens. Matter 78, 085319 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    F. Gallino, C. Di Valentin, G. Pacchioni, M. Chiesa, and E. Giamello, J. Mater. Chem. 20, 689 (2010).CrossRefGoogle Scholar
  18. 18.
    L. Li, W. Wang, H. Liu, X. Liu, Q. Song, and S. Ren, J. Phys. Chem. C 113, 8460 (2009).CrossRefGoogle Scholar
  19. 19.
    W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, Phys. Rev. B: Condens. Matter 82, 045106 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, J. Hazard. Mater. 179, 560 (2009).CrossRefGoogle Scholar
  21. 21.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave + Local Orbital Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, Austria, 2001).Google Scholar
  22. 22.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).ADSCrossRefGoogle Scholar
  24. 24.
    H. Schulz and K. H. Thiemann, Solid State Commun. 32, 783 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. A. Skorikov
    • 1
    Email author
  • M. A. Korotin
    • 1
  • E. Z. Kurmaev
    • 1
  • S. O. Cholakh
    • 2
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations