Journal of Experimental and Theoretical Physics

, Volume 115, Issue 5, pp 759–768 | Cite as

Vibrational excitation of a molecule by a resonance current

Atoms, Molecules, Optics

Abstract

Correct expressions are obtained for calculating a tunnel-resonance current through molecules. The participation of molecular vibrations in the resonance charge transfer through a molecule and vibrational excitation of the molecule are determined by the reorganization energy Er of the vibrational system depending on the displacement of the equilibrium position of vibrational modes in passing from the neutral molecule to the resonance state of a molecular ion. The mean excitation energy of the molecule during the propagation of an elementary charge changes from Er at the voltage across electrodes close to the threshold up to 2Er at voltages considerably exceeding the threshold voltage. An expression is obtained for the stationary vibrational temperature of the molecule, which is proportional to the resonance current.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Nitzan and M. A. Ratner, Science (Washington) 300, 1384 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    N. J. Tao, Nat. Nanotechnol. 1, 173 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    S. Karthänser, J. Phys.: Condens. Matter 23, 013001 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    Z. L. Gasina, G. M. Morales, A. Sanchez, and L. Yu, Chem. Phys. Lett. 417, 401 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    I. I. Oleynik, M. A. Kozhushner, V. S. Posvyanskii, and L. Yu, Phys. Rev. Lett. 96, 096803 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    T. Albrecht, K. Moth-Poulsen, J. B. Christensen, J. Hjelm, T. Bjornholm, and J. Ulstrup, J. Am. Chem. Soc. 128, 6574 (2006).CrossRefGoogle Scholar
  7. 7.
    F. Chen, J. Hihath, Z. Huang, X. Li, and N. J. Tao, Annu. Rev. Phys. Chem. 58, 535 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    P. K. Hansma, Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (Plenum, New York, 1982).Google Scholar
  9. 9.
    F. Dalidchik, M. Grishin, N. Kolchenko, and S. Kovalevskii, Surf. Sci. 387, 50 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Grishin, F. I. Dalidchik, S. A. Kovalevskii, N. N. Kolchenko, and B. R. Shub, JETP Lett. 66(1), 37 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter 19, 103201 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    P. I. Arseev and N. S. Maslova, Phys.—Usp. 53(11), 1151 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    L. Adamska, M. A. Kozhushner, and I. I. Oleynik, Phys. Rev. B: Condens. Matter 80, 108947 (2010).Google Scholar
  15. 15.
    S. Datta, Quantum Transport: From Atom to Transistor (Cambridge University Press, Cambridge, 2005).MATHCrossRefGoogle Scholar
  16. 16.
    M. A. Kozhushner, V. S. Posvyanskii, and I. I. Oleynik, Chem. Phys. 319, 368 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Fizmatlit, Moscow, 1962; Pergamon, Oxford, 1965).Google Scholar
  18. 18.
    O. V. Gritsenko, B. Braïda, and E. J. Baerends, J. Chem. Phys. 119, 1937 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. Dahnovsky, V. G. Zakrzewski, A. Kletsov, and J. V. Ortiz, J. Chem. Phys. 123, 184711 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    M. P. Samanta, W. Tian, S. Datta, J. I. Henderson, and C. P. Kubiak, Phys. Rev. B: Condens. Matter 53, R7626 (1996).ADSCrossRefGoogle Scholar
  21. 21.
    G.-C. Liang and A. W. Ghosh, Phys. Rev. Lett. 95, 078403 (2005).Google Scholar
  22. 22.
    C. Toher and S. Sanvito, Phys. Rev. B: Condens. Matter 99, 056801 (2007).ADSGoogle Scholar
  23. 23.
    J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. B: Condens. Matter 68, 121101 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    D. Natelson, L. H. Yu, J. W. Ciszek, Z. K. Keane, and J. M. Tour, Chem. Phys. 324, 267 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    J. P. Bergfield and C. A. Stafford, Phys. Rev. B: Condens. Matter 79, 245125 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    D. I. Bolgov, M. A. Kozhushner, R. R. Muriasov, and V. S. Posvianskii, J. Chem. Phys. 119, 3871 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    M. Galperin and A. Nitzan, Ann. New York Acad. Sci. 1006, 48 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B: Condens. Matter 73, 045314 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    S. I. Pekar, Zh. Eksp. Teor. Fiz. 20, 50 (1950).Google Scholar
  30. 30.
    Huang Kun and A. Rys, Proc. R. Soc. London, Ser. A 204, 406 (1950).ADSMATHCrossRefGoogle Scholar
  31. 31.
    R. Kubo and I. Toyozawa, Prog. Theor. Phys. 13, 160 (1955).ADSMATHCrossRefGoogle Scholar
  32. 32.
    A. M. Kuznetsov, Charge Transfer in Physics, Chemistry, and Biology (Gordon and Breach, New York, 1995).Google Scholar
  33. 33.
    Yu. E. Perlin, Sov. Phys.—Usp. 6, 542 (1963).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    R. Marcus, J. Phys. Chem. 24,966, 979 (1956).Google Scholar
  35. 35.
    M. A. Kozhushner, in Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, Ed. by L. I. Trakhtenberg, S. H. Lin, and O. J. Ilegbusi (Elsevier, Amsterdam, 2007), Vol. 34, Chap. 2.Google Scholar
  36. 36.
    I. Diez-Perz, J. Hihath, Y. Lee, L. Yu, L. Adamska, M. A. Kozhushner, I. I. Oleynik, and N. Tao, Nat. Chem. 1, 635 (2009).CrossRefGoogle Scholar
  37. 37.
    F. I. Dalidchik, Sov. Phys. JETP 60(4), 795 (1984).Google Scholar
  38. 38.
    Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, Nat. Nanotechnol. 3, 727 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.University of South FloridaTampaUSA

Personalised recommendations