Advertisement

Journal of Experimental and Theoretical Physics

, Volume 115, Issue 3, pp 462–473 | Cite as

Hydrogen sorption in titanium alloys with a symmetric Σ5(310) tilt grain boundary and a (310) surface

  • S. E. KulkovaEmail author
  • A. V. Bakulin
  • S. S. Kulkov
  • S. Hocker
  • S. Schmauder
Solids and Liquids

Abstract

The hydrogen sorption in intermetallic B2 TiM (M = Ni, Co, Pd) with a symmetric Σ5(310) tilt grain boundary and a (310) surface is studied by density functional theory methods. The effect of hydrogen on the electronic characteristics of the alloys is analyzed as a function of a sorption position at the interfaces. The hydrogen sorption energy is shown to depend on the local environment of hydrogen; on the whole, hydrogen at the interfaces prefers titanium-rich positions. The hydrogen sorption energy in metal-rich positions decreases when the d shell of the second alloy component is filled with electrons. The grain-boundary energy, the surface energy, and the hydrogen segregation energies to the interfaces are calculated. Hydrogen sorption in titanium alloys is shown to decrease Griffith work and to favor brittle fracture along tilt grain boundaries.

Keywords

Titanium Alloy Adsorption Energy TiNi Hydrogen Adsorption Titanium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hydrogen in Metals, Ed. by G. Alefeld and J. Völkl (Springer, Heidelberg, 1978; Mir, Moscow, 1981).Google Scholar
  2. 2.
    V. Guther and A. Otto, J. Alloys Compd. 293–295, 889 (1999).CrossRefGoogle Scholar
  3. 3.
    J. R. Rice and J. S. Wang, Mater. Sci. Eng., A 107, 23 (1989).CrossRefGoogle Scholar
  4. 4.
    W. Zhong, Y. Cai, and D. Tomanek, Phys. Rev. B: Condens. Matter 46, 8099 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    W. Zhong, Y. Cai, and D. Tomanek, Nature (London) 362, 435 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    M. Iwamoto and Y. Fukai, Mater. Trans., JIM 40, 606 (1999).Google Scholar
  7. 7.
    W. T. Geng, A. J. Freeman, R. Wu, C. B. Geller, and J. E. Raynolds, Phys. Rev. B: Condens. Matter 60, 7149 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    W. T. Geng, A. J. Freeman, and G. B. Olson, Phys. Rev. B: Condens. Matter 63, 165415 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    G. B. Olson, Science (Washington) 277, 1237 (1997).CrossRefGoogle Scholar
  10. 10.
    M. Mrovec, T. Ochs, C. Elsasser, V. Viter, D. Nguyen-Manh, and D. Pettifor, Z. Metallkd. 93, 1 (2003).Google Scholar
  11. 11.
    W. Bolman, Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970).Google Scholar
  12. 12.
    A. Eichler, J. Hafner, and G. Kresse, J. Phys.: Condens. Matter. 8, 7659 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    D. E. Jiang and E. A. Carter, Phys. Rev. B: Condens. Matter 70, 064102 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    D. Gupta, Interface Sci. 11, 7 (2003).CrossRefGoogle Scholar
  15. 15.
    T. Ochs, C. Elsasser, M. Mrovec, V. Vitek, J. Belak, and J. A. Moriarty, Philos. Mag. A 80, 2405 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    M. Needels, A. M. Rappe, P. D. Bristowe, and J. D. Joannopoulos, Phys. Rev. B: Condens. Matter 46, 9768 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    G. Lu, N. Kioussis, and R. Wu, Phys. Rev. B: Condens. Matter 59, 891 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    J. X. Shang and C. Y. Wang, Phys. Rev. B: Condens. Matter 66, 184105 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    S. V. Eremeev, S. E. Kulkova, and P. L. Potapov, Comput. Mater. Sci. 36, 244 (2006).CrossRefGoogle Scholar
  20. 20.
    J. R. Alvares and P. Rez, Acta Mater. 49, 795 (2001).CrossRefGoogle Scholar
  21. 21.
    M. Shiga, M. Yamaguchi, and H. Kaburaki, Phys. Rev. B: Condens. Matter 68, 24502 (2003).CrossRefGoogle Scholar
  22. 22.
    Q. M. Hu, R. Yang, D. S. Xu, Y. L. Hao, D. Li, and W. T. Wu, Phys. Rev. B: Condens. Matter 67, 224203 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    W. T. Geng, A. J. Freeman, R. Wu, and G. B. Olson, Phys. Rev. B: Condens. Matter 62, 6208 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    R. Besson, A. Legris, and J. Morillo, Phys. Rev. B: Condens. Matter 64, 174105 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    S. V. Eremeev, S. S. Kul’kov, and S. E. Kul’kova, Fiz. Mezomekh. 13, 81 (2010).Google Scholar
  26. 26.
    S. E. Kul’kova, S. V. Eremeev, S. S. Kul’kov, D. I. Bazh-anov, D. Sh. Shui, Ts. M. Khu, and Yu. L. Khao, Fiz. Mezomekh. 8(special issue), 25 (2005).Google Scholar
  27. 27.
    Y. J. Li, S. E. Kulkova, Q. M. Hu, D. I. Bazhanov, D. S. Xu, Y. L. Hao, and R. Yang, Phys. Rev. B: Condens. Matter 76, 064110 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    E. M. B. Heller, J. F. Suyver, A. M. Vredenberg, and D. O. Boerna, Appl. Surf. Sci. 150, 227 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    J. Sanders and B. Tatarchuk, J. Phys. F: Met. Phys. 18, L267 (1988).ADSCrossRefGoogle Scholar
  30. 30.
    S. E. Kulkova, S. V. Eremeev, V. E. Egorushkin, J. S. Kim, and S. Y. Oh, Solid State Commun. 126, 405 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    J. S. Kim, S. Y. Oh, G. Lee, Y. M. Koo, S. E. Kulkova, and V. E. Egorushkin, Int. J. Hydrogen Energy 29, 87 (2004).CrossRefGoogle Scholar
  32. 32.
    H. Yukawa, K. Nakatsuka, and M. Morinaga, Sol. Energy Mater. Sol. Cells 62, 75 (2000).CrossRefGoogle Scholar
  33. 33.
    S. S. Kul’kov, S. V. Eremeev, and S. E. Kul’kova, Phys. Solid State (St. Petersburg) 51(6), 1281 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  36. 36.
    G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).ADSCrossRefGoogle Scholar
  37. 37.
    G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter 45, 13244 (1992).ADSCrossRefGoogle Scholar
  39. 39.
    S. E. Kulkova, S. S. Kulkov, A. V. Bakulin, S. Hocker, and S. Schmauder, Int. J. Hydrogen Energy 37, 6666 (2012).CrossRefGoogle Scholar
  40. 40.
    K. Itoh, H. Sasaki, H. T. Takeshita, K. Mori, and T. Fukunaga, J. Alloys Compd. 404–406, 95 (2005).CrossRefGoogle Scholar
  41. 41.
    G. Kresse and J. Hafner, Surf. Sci. 459, 287 (2000).ADSCrossRefGoogle Scholar
  42. 42.
    W. Dong, V. Ledentu, P. Saute, K. Mori, and T. Fukunaga, Surf. Sci. 377-379, 287 (2000).Google Scholar
  43. 43.
    G. Lee, J. S. Kim, Y. M. Koo, and S. E. Kulkova, Int. J. Hydrogen Energy 27, 403 (2002).CrossRefGoogle Scholar
  44. 44.
    S. E. Kulkova, D. V. Valujsky, J. S. Kim, G. Lee, and Y. M. Koo, Phys. Rev. B: Condens. Matter 65, 85410 (2002).ADSCrossRefGoogle Scholar
  45. 45.
    M. Gupta and E. Rodriguez, J. Alloys Compd. 219, 6 (1995).CrossRefGoogle Scholar
  46. 46.
    C. M. Varma and A. J. Wilson, Phys. Rev. B: Condens Matter 22, 3795 (1980).ADSCrossRefGoogle Scholar
  47. 47.
    W. Zhong, R. Wu, A. J. Freeman, and G. Olson, Phys. Rev. B: Condens. Matter 62, 13938 (2000).ADSCrossRefGoogle Scholar
  48. 48.
    S. M. Lee and T. P. Perng, Int. J. Hydrogen Energy 25, 831 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. E. Kulkova
    • 1
    • 2
    Email author
  • A. V. Bakulin
    • 2
  • S. S. Kulkov
    • 1
  • S. Hocker
    • 3
  • S. Schmauder
    • 3
  1. 1.Institute of Strength Physics and Material Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Institute of Materials Testing, Materials Science and Strength of MaterialsUniversity of StuttgartStuttgartGermany

Personalised recommendations