Journal of Experimental and Theoretical Physics

, Volume 115, Issue 4, pp 723–728 | Cite as

Condensation of water vapor in the gravitational field

  • V. G. Gorshkov
  • A. M. Makarieva
  • A. V. NefiodovEmail author
Statistical, Nonlinear, and Soft Matter Physics


Physical peculiarities of water vapor condensation under conditions of hydrostatic equilibrium are considered. The power of stationary dynamic air fluxes and the vertical temperature distribution caused by condensation on large horizontal scales are estimated.


Gravitational Field Hydrostatic Equilibrium Latent Heat Release Saturated Water Vapor Temperature Lapse Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Grover, T. P. Cotter, and G. F. Erickson, J. Appl. Phys. 35, 1990 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    X. L. Xie, Y. L. He, W. Q. Tao, and H. W. Yang, Appl. Therm. Eng. 28, 433 (2008).CrossRefGoogle Scholar
  3. 3.
    P. N. Shankar and M. D. Deshpande, Phys. Fluids A 2, 1030 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Sone, Transp. Theory Stat. Phys. 29, 227 (2000).ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    V. A. Rykov, V. A. Titarev, and E. M. Shakhov, Fluid Dyn. 44, 464 (2009).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    A. M. Makarieva and V. G. Gorshkov, Phys. Lett. A 375, 1053 (2011).ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    A. M. Makarieva, V. G. Gorshkov, and A. V. Nefiodov, Phys. Lett. A 375, 2259 (2011).ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    A. E. Gill, Atmosphere-Ocean Dynamics (Academic, New York, 1982).Google Scholar
  9. 9.
    R. K. Smith, Q. J. R. Meteorol. Soc. 123, 407 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    A. M. Makarieva and V. G. Gorshkov, Hydrol. Earth Syst. Sci. 11, 1013 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    G. H. Bryan and R. Rotunno, Mon. Weather Rev. 137, 1770 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    J. Pelkowski and T. Frisius, J. Atmos. Sci. 68, 2430 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Gostekhizdat, Moscow, 1954; Butterworth-Heinemann, Oxford, 1959).Google Scholar
  14. 14.
    A. M. Makarieva and V. G. Gorshkov, Phys. Lett. A 373, 2801 (2009).ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    A. M. Makarieva and V. G. Gorshkov, Int. J. Water 5, 365 (2010).CrossRefGoogle Scholar
  16. 16.
    A. M. Makarieva and V. G. Gorshkov, Phys. Lett. A 373, 4201 (2009).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    J. R. Holton, An Introduction to Dynamic Meteorology (Academic, Amsterdam, 2004).Google Scholar
  18. 18.
    V. G. Levich, Theoretical Physics (Fizmatlit, Moscow, 1962; North-Holland, Amsterdam, 1970), Vol. 1.Google Scholar
  19. 19.
    K. A. Emanuel, Atmospheric Convection (Oxford University Press, Oxford, 1994).Google Scholar
  20. 20.
    A. M. Makarieva, V. G. Gorshkov, D. Sheil, A. D. Nobre, and B.-L. Li, Atmos. Chem. Phys. Discuss. 10, 24015 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    T. Spengler, J. Egger, and S. T. Garner, J. Atmos. Sci. 68, 347 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. G. Gorshkov
    • 1
  • A. M. Makarieva
    • 1
  • A. V. Nefiodov
    • 1
    Email author
  1. 1.Konstantinov Petersburg Nuclear Physics InstituteGatchina, Leningradskaya oblastRussia

Personalised recommendations