Journal of Experimental and Theoretical Physics

, Volume 115, Issue 5, pp 885–896 | Cite as

Effect of heteroboundary spreading on the properties of exciton states in Zn(Cd)Se/ZnMgSSe quantum wells

  • A. F. Adiyatullin
  • V. V. Belykh
  • V. I. Kozlovsky
  • V. S. Krivobok
  • V. P. Martovitsky
  • S. N. Nikolaev
Electronic Properties of Solid

Abstract

Exciton states in Zn(Cd)Se/ZnMgSSe quantum wells with different diffusion spreading of interfaces are studied by optical spectroscopy methods. It is shown that the emission spectrum of quantum wells at low temperatures is determined by free excitons and bound excitons on neutral donors. The nonlinear dependence of the stationary photoluminescence intensity on the excitation power density and the biexponential luminescence decay are explained by the neutralization of charged defects upon photoexcitation of heterostructures. With the stationary illumination on, durable (about 40 min) reversible changes in the reflection coefficient near the exciton resonances of quantum wells are observed. It is shown that, along with the shift of exciton levels, the spreading of heteroboundaries leads to three effects: an increase in the excitonphonon interaction, an increase in the energy shift between the emission lines of free and bound excitons, and a decrease in the decay time of exciton luminescence in a broad temperature range. The main reasons for these effects are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Platonov, V. P. Kochereshko, E. L. Ivchenko, G. V. Mikhailov, D. R. Yakovlev, M. Keim, W. Ossau, A. Waag, and G. Landwehr, Phys. Rev. Lett. 83, 3546 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Gurevich, V. P. Kochereshko, A. V. Platonov, A. Baar, D. R. Yakovlev, and G. Landwehr, Phys. Solid State (St. Petersburg) 46(4), 780 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    D. R. Yakovlev, A. V. Platonov, E. L. Ivchenko, V. P. Kochereshko, C. Sas, W. Ossau, L. Hansen, A. Waag, G. Landwehr, and L. W. Molenkamp, Phys. Rev. Lett. 88, 257401 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Gurevich, V. P. Kochereshko, A. V. Platonov, B. A. Zyakin, A. Waag, and G. Landwehr, Phys. Solid State (St. Petersburg) 47(10), 1964 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    W. Grieshaber, A. Haury, J. Cibert, Y. Merle d’Aubigné, A. Wasiela, and J. A. Gaj, Phys. Rev. B: Condens. Matter 53, 4891 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    A. Ishibashi and Y. Mori, J. Cryst. Growth 138, 677 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59(11), 1272 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    H. Okuyama, T. Miyajima, Y. Morinaga, F. Hiei, M. Ozawa, and K. Akimoto, Electron. Lett. 28(19), 1798 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    S. Itoh, K. Nakano, and A. Ishibashi, J. Cryst. Growth 214/215, 1029 (2000).CrossRefGoogle Scholar
  10. 10.
    M. Straβburg, M. Kuttler, U. W. Pohl, and D. Bimberg, Thin Solid Films 336, 208 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, IEEE J. Quantum Electron. 25, 1500 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Kozlovsky, E. A. Shcherbakov, E. M. Dianov, A. B. Krysa, A. S. Nasibov, and P. A. Trubenko, J. Cryst. Growth 159, 609 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    P. I. Kuznetsov, G. G. Yakushcheva, V. A. Jitov, L. Yu. Zakharov, V. I. Kozlovsky, and D. A. Sannikov, in Proceedings of the Fifth Belarusian-Russian Workshop “Semiconductor Lasers and Systems,” Minsk, Belarus, June 1–5, 2005 (Minsk, 2005), p. 223.Google Scholar
  14. 14.
    V. I. Kozlovsky and V. P. Martovitsky, Physica B (Amsterdam) 404(23–24), 5009 (2009).ADSGoogle Scholar
  15. 15.
    M. D. Tibery, V. I. Kozlovsky, and P. I. Kuznetsov, Phys. Status Solidi B 247(6), 1547 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    G. Kudlek and J. Gutowski, J. Lumin. 52(1–4), 55 (1992).CrossRefGoogle Scholar
  17. 17.
    H. Mathieu, P. Lefebvre, and P. Christol, Phys. Rev. B: Condens. Matter 46, 4092 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    A. Venu Gopal, R. Kumar, A. S. Vengurlekar, A. Bosacchi, S. Franchi, and L. N. Pfeiffer, J. Appl. Phys. 87, 1858 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    J. Puls, M. Rabe, A. Siarkos, and F. Henneberger, Phys. Rev. B: Condens. Matter 57, 14749 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    S. A. Crooker, E. Johnston-Halperin, D. D. Awschalom, R. Knobel, and N. Samarth, Phys. Rev. B: Condens. Matter 61, R16307 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    A. Esser, E. Runge, R. Zimmermann, and W. Langbein, Phys. Rev. B: Condens. Matter 62, 8232 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    H. P. Wagner, A. Sch↦z, R. Maier, W. Langbein, and J. M. Hvam, Phys. Rev. B: Condens. Matter 57, 1791 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    Excitons, Ed. by E. I. Rashba and M. D. Sturge (NorthHolland, Amsterdam, 1982; Nauka, Moscow, 1985).Google Scholar
  24. 24.
    P. O. Holtz, B. Monemar, and H. J. Loykowski, Phys. Rev. B: Condens. Matter 32, 986 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    A. Pawlis, M. Panfilova, D. J. As, K. Lischka, K. Sanaka, T. D. Ladd, and Y. Yamamoto, Phys. Rev. B: Condens. Matter 77, 153304 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, F. Henneberger, S. A. Crooker, Q. McCulloch, D. Wolverson, N. A. Gippius, and A. Waag, Phys. Rev. B: Condens. Matter 65, 165335 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    P. J. Dean, D. C. Herbert, C. J. Werkhoven, B. J. Fitzpatrick, and R. N. Bhargava, Phys. Rev. B: Condens. Matter 23, 4888 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    P. J. Dean, W. Stutius, G. F. Neumark, B. J. Fitzpatrick, and R. N. Bhargava, Phys. Rev. B: Condens. Matter 27, 2419 (1983).ADSCrossRefGoogle Scholar
  29. 29.
    T. Lebihen, A. Filoramo, E. Deleporte, J. Martinez-Pastor, Ph. Roussignol, C. Delalande, M. Zigone, and G. Martinez, Phys. Rev. B: Condens. Matter 55, 9915 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    J. P. Bergman, P. O. Holtz, B. Monemar, M. Sundaram, J. L. Merz, and A. C. Gossard, Phys. Rev. B: Condens. Matter 43, 4765 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Takahashi, S. S. Kano, K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Appl. Phys. Lett. 64, 1845 (1994).ADSCrossRefGoogle Scholar
  32. 32.
    D. Sanvitto, R. A. Hogg, A. J. Shields, D. M. Whittaker, M. Y. Simmons, D. A. Ritchie, and M. Pepper, Phys. Rev. B: Condens. Matter 62, R13294 (2000).Google Scholar
  33. 33.
    D. Bajoni, M. Perrin, P. Senellart, A. Lemaĭtre, B. Sermage, and J. Bloch, Phys. Rev. B: Condens. Matter 73, 205344 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. F. Adiyatullin
    • 1
    • 2
  • V. V. Belykh
    • 1
  • V. I. Kozlovsky
    • 1
  • V. S. Krivobok
    • 1
    • 2
  • V. P. Martovitsky
    • 1
  • S. N. Nikolaev
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations