Journal of Experimental and Theoretical Physics

, Volume 115, Issue 2, pp 309–320

Peculiarities of the correlation functions, X-ray and neutron scattering in BaTiO3

Order, Disorder, and Phase Transition in Condensed System

Abstract

Based on molecular-dynamics (MD) simulations, we have calculated the static and dynamic correlation functions in a BaTiO3 crystal. The static correlation functions have been used to study the peculiarities of diffuse scattering in barium titanate showing the experimentally observed anomalous planes. Based on time-dependent pair correlation functions, we have calculated the phonon spectra of BaTiO3 and studied the central peak of inelastic scattering. The phonon frequencies calculated by the MD method agree well with those obtained previously in the quasi-harmonic approximation. We show that the central peak of inelastic scattering is associated mainly with the soft optic mode and has the same symmetry. The large anisotropy in the displacements of atoms in the soft mode allows the presence of peculiarities in both X-ray scattering and EXAFS spectroscopy to be explained. The characteristic shape of the EXAFS spectra is shown to be explained by the quasi-one-dimensional motion of the oxygen ions in the cubic lattice of BaTiO3. Our calculation of triple correlation functions shows that the titanium atom in the described model oscillates around the cubic cell center. Explaining the experimental data that have caused disagreement about the nature of the phase transition in BaTiO3 using the developed model gives grounds to treat the phase transition in barium titanate as a displacive one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Comes, M. Lambert, and A. Guinier, Solid State Commun. 6, 715 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    R. Comes, M. Lambert, and A. Guinier, Acta Crystallogr., Sect A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 26, 244 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    J. D. Axe, Phys. Rev. 157, 429 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Yamada and G. Shirane, Phys. Rev. 177, 2 (1969).CrossRefGoogle Scholar
  5. 5.
    G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, Phys. Rev. B: Solid State 2, 155 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    J. Harada, J. D. Axe, and G. Shirane, Phys. Rev. B: Solid State 4, 155 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    B. Jannot, C. Escribe-Filippini, and J. Bouillot, J. Phys. C: Solid State Phys. 17, 1329 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    B. Ravel, E. A. Stern, R. I. Vedrinskyi, and V. Kraizman, Ferroelectrics 206–207, 407 (1998).CrossRefGoogle Scholar
  9. 9.
    M. I. Bell, K. H. Kim, and W. T. Elam, Ferroelectrics 120, 103 (1991).CrossRefGoogle Scholar
  10. 10.
    N. Sicron, B. Ravel, Y. Yacoby, E. A. Stern, F. Dogan, and J. J. Rehr, Phys. Rev. B: Condens. Matter 50, 13168 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    B. Zalar, V. V. Lagute, and R. Blinc, Phys. Rev. Lett. 90, 037601 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    B. D. Chapman, E. A. Stern, S.-W. Han, J. O. Cross, G. T. Seidler, V. Gavrilyatchenko, R. V. Vedrinskii, and V. L. Kraizman, Phys. Rev. B: Condens. Matter 71, 020102(R) (2005).ADSCrossRefGoogle Scholar
  13. 13.
    O. E. Kvyatkovskii, Phys. Solid State 43(8), 1401 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    A. Huller, Z. Phys. 220, 145 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    A. Huller, Solid State Commun. 7, 589 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    B. E. Warren, X-Ray Diffraction (Dover, New York, 1969).Google Scholar
  17. 17.
    N. Takesue, M. Maglione, and H. Chen, Phys. Rev. B: Condens. Matter 51, 6696 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    M. Holma, N. Takesue, and H. Chen, Ferroelectrics 164, 237 (1995).CrossRefGoogle Scholar
  19. 19.
    E. G. Maksimov and N. L. Matsko, JETP 108(3), 435 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    E. G. Maksimov, N. L. Matsko, S. V. Ebert, and M. V. Magnitskaya, Ferroelectrics 354, 19 (2007).CrossRefGoogle Scholar
  21. 21.
    N. L. Matsko, E. G. Maksimov, and S. V. Lepeshkin, Kratk. Soobshch. Fiz., No. 3, 35 (2011).Google Scholar
  22. 22.
    H. Bilz, G. Benedek, and A. Bussman-Holder, Phys. Rev. B: Condens. Matter 35, 4840 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    D. Khatib, R. Migoni, G. E. Kugel, and L. Godefroy, J. Phys.: Condens. Matter 1, 9811 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    G. E. Kugel and M. D. Fontana, Phys. Rev. B: Condens. Matter 35, 813 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    R. Migoni and H. Bilz, Phys. Rev. Lett. 37, 1155 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    W. Smith and I. T. Todorov, The DL-POLY-3.0: Molecular Simulation Package User Manual (Daresbury Laboratory, Daresbury, United Kingdom, 2006); http://www.ccp5.ac.uk//DL-POLY/.Google Scholar
  27. 27.
    P. J. Mitchell and D. Fincham, J. Phys.: Condens. Matter 5, 1031 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976; Mir, Moscow, 1979).Google Scholar
  29. 29.
    S. Tinte, M. G. Stachiotti, M. Sepliarsky, R. L. Migoni, and C. O. Rodrigues, Ferroelectrics 237, 41 (2000).CrossRefGoogle Scholar
  30. 30.
    M. Sepliarsky, S. R. Phillpot, M. G. Stachiotti, and R. L. Migoni, J. Appl. Phys. 91, 5 (2002).CrossRefGoogle Scholar
  31. 31.
    S. R. Phillpot, M. Sepliarsky, M. G. Stachiotti, R. L. Migoni, and S. K. Streiffer, J. Mater. Sci. 40, 3213 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    M. G. Stachiotti, M. Sepliarsky, R. L. Migoni, and C. O. Rodriguez, in Proceedings of the Fifth Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, Williamsburg, Virginia, United States, February 1–4, 1998, Ed. by R. E. Cohen (AIP Conf. Proc. 436, 274 (1998).Google Scholar
  33. 33.
    M. Sepliarsky, R. L. Migoni, and M. G. Stachiotti, Comput. Mater. Sci. 10, 51 (1998).CrossRefGoogle Scholar
  34. 34.
    M. Stachiotti, A. Dobry, R. Migoni, and A. Bussmann-Holder, Phys. Rev. B: Condens. Matter 47, 5 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    M. Sepliarsky, M. G. Stachiotti, and R. L. Migoni, Phys. Rev. B: Condens. Matter 56, 2 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. L. Matsko
    • 1
  • E. G. Maksimov
    • 1
  • S. V. Lepeshkin
    • 1
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations