Model of delocalized atoms in the physics of the vitreous state

Solids and Liquids


A development of the model of delocalized atoms of liquids and glasses is proposed. It is shown that the basic equation of the model for the probability of delocalization (excitation) of an atom can be obtained not only from the Clausius relation but also by other methods of statistical physics. Techniques for calculating the parameters of the model are developed. The critical displacement of an atom from the equilibrium position, which corresponds to the maximum interatomic attraction force, can be considered as a delocalization (local excitation) of this atom in an elastic continuum. The energy of the critical displacement of an atom calculated as the work of the limit elastic deformation of the interatomic bond in an elastic continuum is in agreement with the results of calculation by the model of delocalized atoms. This energy can also be calculated from the data on surface tension and atomic volume. In silicate glasses, the process of delocalization of an atom represents the critical displacement of a bridging oxygen atom in the structural fragment of a silicon-oxygen (Si-O-Si) network before the switching of the valence bond, whereas, in amorphous organic polymers, the delocalization of an atom corresponds to the limit displacement of a fragment of the main chain of a macromolecule (a group of atoms in the connecting link).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. I. Ojovan, Adv. Condens. Matter Phys., Article ID 817829 (2008).Google Scholar
  2. 2.
    J. F. Stanzione III, K. E. Stranwhecker, and R. P. Wool, J. Non-Cryst. Solids 357, 311 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    M. I. Ojovan and W. E. Lee, J. Non-Cryst. Solids 356, 2534 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State (CRC Press, London, 1995).Google Scholar
  5. 5.
    M. D. Bal’makov, The Vitreous State of Matter (St. Petersburg State University, St. Petersburg, 1996) [in Russian].Google Scholar
  6. 6.
    D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  7. 7.
    M. I. Ozhovan, JETP 103(5), 819 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    S. V. Nemilov, J. Non-Cryst. Solids 352, 2715 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Nemilov, Glass Phys. Chem. 36(3), 253 (2010).CrossRefGoogle Scholar
  10. 10.
    M. N. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Petrov, Sov. Phys. Dokl. 33(8), 613 (1988).ADSGoogle Scholar
  12. 12.
    V. A. Petrov, A. Ya. Bashkarev, and V. I. Vettegren’, Physical Principles of the Prediction of the Working Life of Structural Materials (Politekhnika, St. Petersburg, 1993) [in Russian].Google Scholar
  13. 13.
    D. S. Sanditov, Dokl. Phys. Chem. 390(1–3), 122 (2003).CrossRefGoogle Scholar
  14. 14.
    D. S. Sanditov, JETP 108(1), 98 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    A. N. Solov’ev and A. B. Kaplun, Vibrational Method for Measuring the Viscosity of Liquids (Nauka, Novosibirsk, 1970) [in Russian].Google Scholar
  16. 16.
    A. I. Burshtein, Molecular Physics (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  17. 17.
    J. Frenkel, Kinetic Theory of Liquids (Clarendon Oxford, 1941; Academy of Sciences of the Soviet Union, Moscow, 1945).Google Scholar
  18. 18.
    D. S. Sanditov, S. B. Munkueva, D. Z. Batlaev, and B. D. Sanditov, Russ. J. Phys. Chem. A 85(12), 2074 (2011).CrossRefGoogle Scholar
  19. 19.
    J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961; Inostrannaya Literatura, Moscow, 1963).Google Scholar
  20. 20.
    D. S. Sanditov, S. Sh. Sangadiev, and B. D. Sanditov, Glass Phys. Chem. 26(1), 59 (2000).Google Scholar
  21. 21.
    D. S. Sanditov, JETP 110(4), 675 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    D. S. Sanditov, JETP 111(5), 749 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    Ya. I. Frenkel’, Introduction to the Theory of Metals (Gostekhizdat, Leningrad, 1948) [in Russian].Google Scholar
  24. 24.
    V. I. Betekhtin, A. M. Glezer, A. G. Kadomtsev, and A. Yu. Kipyatkova, Phys. Solid State 40(1), 74 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    D. S. Sanditov, A. N. Parfenov, and Sh. B. Tsydypov, Russ. J. Phys. Chem. A 79(9), 1464 (2005).Google Scholar
  26. 26.
    M. Coenen, Glastech. Ber. 40, 74 (1977).Google Scholar
  27. 27.
    V. N. Belomestnykh and E. P. Tesleva, Tech. Phys. 74(8), 1098 (2004).CrossRefGoogle Scholar
  28. 28.
    R. H. Doremus, Am. Ceram. Soc. Bull. 82, 59 (2003).Google Scholar
  29. 29.
    M. I. Ojovan, K. P. Travis, and R. J. Hand, J. Phys.: Condens. Matter 19, 415107 (2007).CrossRefGoogle Scholar
  30. 30.
    J. D. Mackenzie, J. Am. Ceram. Soc. 47, 76 (1964).CrossRefGoogle Scholar
  31. 31.
    G. M. Bartenev and D. S. Sanditov, Sov. Phys. Dokl. 12(9), 691 (1967).Google Scholar
  32. 32.
    G. M. Bartenev, I. V. Rasumovskaya, and D. S. Sanditov, J. Non-Cryst. Solids 1, 388 (1969).ADSCrossRefGoogle Scholar
  33. 33.
    D. S. Sanditov, Polym. Sci., Ser. A 49(5), 549 (2007).CrossRefGoogle Scholar
  34. 34.
    B. D. Sanditov, M. V. Darmaev, D. S. Sanditov, and V. V. Mantatov, Russ. J. Phys. Chem. A 82(7), 1232 (2008).CrossRefGoogle Scholar
  35. 35.
    V. I. Vettegren, A. I. Slutsker, and V. B. Kulik, Phys. Solid State 51(1), 212 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    M. N. Magomedov, Tech. Phys. Lett. 35(7), 670 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    Q. Deng, C. S. Sunder, and Y. C. Jean, J. Phys. Chem. 96, 492 (1992).CrossRefGoogle Scholar
  38. 38.
    Y. Y. Wang, H. Nakanishi, Y. C. Jean and T. C. Sandreczki, J. Polym. Sci., Part B: Polym. Phys. 28, 1431 (1990).ADSCrossRefGoogle Scholar
  39. 39.
    Y. C. Jean, H. Nakanishi, L. Y. Hao, and T. C. Sandreczki, Phys. Rev. B: Condens. Matter 42, 9705 (1990).ADSCrossRefGoogle Scholar
  40. 40.
    E. M. Filyanov, Vysokomol. Soedin., Ser. A 29, 975 (1987).Google Scholar
  41. 41.
    B. D. Sanditov, V. V. Mantatov, and D. S. Sanditov, Polym. Sci., Ser. A 49(9), 1026 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Buryat State UniversityUlan-Ude, Buryat RepublicRussia
  2. 2.Institute of Physical Materials Science, Siberian BranchRussian Academy of SciencesUlan-Ude, Buryat RepublicRussia

Personalised recommendations