Advertisement

Journal of Experimental and Theoretical Physics

, Volume 114, Issue 6, pp 1012–1017 | Cite as

Artificial nets from superconducting nanogranules

  • Yu. N. Ovchinnikov
  • V. Z. Kresin
Order, Disorder, and Phase Transition in Condensed System
  • 49 Downloads

Abstract

We show that a large transport current can flow through superconducting nets composed of nano-clusters. Although thermal and quantum fluctuations lead to a finite value of dissipation, this value can be very small in one- and two-dimensional systems for realistic parameters of the nanoclusters and distances between them. The value of the action for vortex tunneling at zero temperature can be made sufficiently large to make the dissipation negligibly small. We estimate the temperature T 0 of the transition from the thermal activation to quantum tunneling.

Keywords

Vortex Critical Current Quantum Tunneling Resonant Tunneling Quantum Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. N. Ovchinnikov and V. Z. Kresin, Eur. Phys. J. B 45, 5 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    V. Z. Kresin and Yu. N. Ovchinnikov, Phys. Rev. B: Condens. Matter 74, 024514 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    V. Z. Kresin and Yu. N. Ovchinnikov, Phys.—Usp. 51(5), 437 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. N. Ovchinnikov and V. Z. Kresin, Phys. Rev. B: Condens. Matter 81, 214505 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. N. Ovchinnikov and V. Z. Kresin, JETP 111(1), 82 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    V. Ambegaokhar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B: Condens. Matter 28, 6281 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    U. Eckern, G. Schön, and V. Ambegaokhar, Phys. Rev. B: Condens. Matter 30, 6419 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    A. I. Larkin, Yu. N. Ovchinnikov, and A. Schmid, Physica B (Amsterdam) 152, 266 (1988).ADSGoogle Scholar
  10. 10.
    M. Iansiti, M. Tinkham, A. T. Johnson, W. F. Smith, and C. J. Lobb, Phys. Rev. B: Condens. Matter 39, 6465 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996).Google Scholar
  12. 12.
    T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    D. V. Averin and K. K. Licharev, in Mesoscopic Phenomena in Solids, Ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991).Google Scholar
  14. 14.
    P. G. de Gennes, Superconductivity of Metal and Alloy (Westview, Boulder, Colorado United States, 1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Max-Planck Institute for Physics of Complex SystemsDresdenGermany
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Lawrence Berkeley LaboratoryUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations