Dynamics of nuclear polarization in InGaAs quantum dots in a transverse magnetic field

  • S. Yu. Verbin
  • I. Ya. Gerlovin
  • I. V. Ignatiev
  • M. S. Kuznetsova
  • R. V. Cherbunin
  • K. Flisinski
  • D. R. Yakovlev
  • M. Bayer
Electronic Properties of Solid

Abstract

The time-resolved Hanle effect is examined for negatively charged InGaAs/GaAs quantum dots. Experimental data are analyzed by using an original approach to separate behavior of the longitudinal and transverse components of nuclear polarization. This made it possible to determine the rise and decay times of each component of nuclear polarization and their dependence on transverse magnetic field strength. The rise and decay times of the longitudinal component of nuclear polarization (parallel to the applied field) were found to be almost equal (approximately 5 ms). An analysis of the transverse component of nuclear polarization shows that the corresponding rise and decay times differ widely and strongly depend on magnetic field strength, increasing from a few to tens of milliseconds with an applied field between 20 and 100 mT. Current phenomenological models fail to explain the observed behavior of nuclear polarization. To find an explanation, an adequate theory of spin dynamics should be developed for the nuclear spin system of a quantum dot under conditions of strong quadrupole splitting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Jeffries, Dynamic Nuclear Orientation (Interscience, New York, 1963; Mir, Moscow, 1965).Google Scholar
  2. 2.
    Optical Orientation, Ed. by F. Meier and B. P. Zakharchenya (North-Holland, Amsterdam, 1984; Nauka, Leningrad, 1989).Google Scholar
  3. 3.
    V. K. Kalevich, K. V. Kavokin, and I. A. Merkulov, in Spin Physics in Semiconductors, Ed. by M. I. Dyakonov (Springer, Berlin, 2008), Chap. 11, p. 309.CrossRefGoogle Scholar
  4. 4.
    V. K. Kalevich, V. D. Kul’kov, and V. G. Fleisher, JETP Lett. 35(1), 20 (1982).ADSGoogle Scholar
  5. 5.
    P. Maletinsky, A. Badolato, and A. Imamoglu, Phys. Rev. Lett. 99, 056804 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    R. V. Cherbunin, S. Yu. Verbin, T. Auer, D. R. Yakovlev, D. Reuter, A. D. Wieck, I. Ya. Gerlovin, I. V. Ignatiev, D. V. Vishnevsky, and M. Bayer, Phys. Rev. B: Condens. Matter 80, 035326 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Tartakovskii, T. Wright, A. Russell, V. I. Fal’ko, A. B. Van’kov, J. Skiba-Szymanska, I. Drouzas, R. S. Kolodka, M. S. Skolnick, P. W. Fry, A. Tahraoui, H.-Y. Liu, and M. Hopkinson, Phys. Rev. Lett. 98, 026806 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    T. Belhadj, T. Kuroda, C.-M. Simon, T. Amand, T. Mano, K. Sakoda, N. Koguchi, X. Marie, and B. Urbaszek, Phys. Rev. B: Condens. Matter 78, 205325 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B: Solid State 15, 5780 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    O. Krebs, P. Maletinsky, T. Amand, B. Urbaszek, A. Lemaĭtre, P. Voisin, X. Marie, and A. Imamoglu, Phys. Rev. Lett. 104, 056603 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    R. V. Cherbunin, S. Yu. Verbin, K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev, D. V. Vishnevsky, D. Reuter, A. D. Wieck, D. R. Yakovlev, and M. Bayer, J. Phys.: Conf. Ser. 245, 012055 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    R. I. Dzhioev and V. L. Korenev, Phys. Rev. Lett. 99, 037401 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Gërard, and T. Amand, Phys. Rev. Lett. 89, 207401 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    A. Shabaev, E. A. Stina, A. S. Bracker, D. Gammon, A. L. Efros, V. L. Korenev, and I. Merkulov, Phys. Rev. B: Condens. Matter 79, 035322 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    I. V. Ignatiev, S. Yu. Verbin, I. Ya. Gerlovin, R. V. Cherbunin, and Y. Masumoto, Opt. Spectrosc. 106(3), 375 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961; Inostrannaya Literatura, Moscow, 1965).Google Scholar
  17. 17.
    I. A. Merkulov, Al. L. Efros, and M. Rosen, Phys. Rev. B: Condens. Matter 65, 205309 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    M. Yu. Petrov, G. G. Kozlov, I. V. Ignatiev, R. V. Cherbunin, D. R. Yakovlev, and M. Bayer, Phys. Rev. B: Condens. Matter 80, 125318 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    E. S. Artemova and I. A. Merkulov, Sov. Phys. Solid State 27(4), 694 (1985).Google Scholar
  20. 20.
    K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev, M. Yu. Petrov, S. Yu. Verbin, D. R. Yakovlev, and M. Bayer, J. Phys.: Conf. Ser. 245, 012056 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 41(4), 759 (1975).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. Yu. Verbin
    • 1
    • 2
  • I. Ya. Gerlovin
    • 1
  • I. V. Ignatiev
    • 1
    • 2
  • M. S. Kuznetsova
    • 1
    • 2
  • R. V. Cherbunin
    • 1
    • 2
  • K. Flisinski
    • 2
  • D. R. Yakovlev
    • 2
    • 3
  • M. Bayer
    • 2
  1. 1.Spin Optics LaboratorySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Technische Universität DortmundDortmundGermany
  3. 3.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations