Band structure and broadband compensation of absorption by amplification in layered optical metamaterials

  • N. N. Rozanov
  • S. V. Fedorov
  • R. S. Savel’ev
  • A. A. Sukhorukov
  • Yu. S. Kivshar
Atoms, Molecules, Optics

Abstract

The frequency dependence of the gain required to compensate for absorption is determined for a layered structure consisting of alternating absorbing and amplifying layers. It is shown that the fulfillment of the same conditions is required for the existence of a band structure consisting of alternating bands allowed and forbidden for optical radiation propagation in the frequency-wave vector parametric region. Conditions are found under which the gain required for compensation is smaller than thresholds for absolute (parasitic lasing) and convective (waveguide amplification of radiation) instabilities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Brillouin and M. Parodi, Wave Propagation in Periodic Structures (Dover, New York, 1953; Inostrannaya Literatura, Moscow, 1959).MATHGoogle Scholar
  2. 2.
    O. Svelto, Principles of Lasers (Springer, New York, 1990; Mir, Moscow, 1990).Google Scholar
  3. 3.
    X. Tr. Tran and N. N. Rozanov, Opt. Spectrosc. 104(4), 558 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    S. A. Ramakrishna and J. B. Pendry, Phys. Rev. B: Condens. Matter 67, 201101(R) (2003).ADSGoogle Scholar
  5. 5.
    S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature (London) 466, 735 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. Fang, Th. Koschny, and C. M. Soukoulis, Phys. Rev. B: Condens. Matter 82, 121102(R) (2010).ADSGoogle Scholar
  7. 7.
    S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, Phys. Rev. Lett. 105, 127401 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    E. I. Kirby, J. M. Hamm, T. W. Pickering, K. L. Tsak- makidis, and O. Hess, Phys. Rev. B: Condens. Matter 84, 041103(R) (2011).ADSCrossRefGoogle Scholar
  9. 9.
    D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).Google Scholar
  11. 11.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964; Nauka, Moscow, 1970).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).Google Scholar
  13. 13.
    N. N. Rosanov, Opt. Spectrosc. 106(3), 430 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    L. A. Mel’nikov and O. N. Kozina, Opt. Spectrosc. 94(3), 411 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Butterworth-Heinemann, Oxford, 1981).Google Scholar
  16. 16.
    B. Nistad and J. Skaar, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 036603 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    N. N. Rosanov, JETP 111(4), o534 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. N. Rozanov
    • 1
    • 2
  • S. V. Fedorov
    • 1
    • 2
  • R. S. Savel’ev
    • 1
  • A. A. Sukhorukov
    • 1
    • 3
  • Yu. S. Kivshar
    • 1
    • 3
  1. 1.St. Petersburg State University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  2. 2.Vavilov State Optical InstituteFederal State Unitary EnterpriseSt. PetersburgRussia
  3. 3.Nonlinear Physics CenterAustralian National UniversityCanberraAustralia

Personalised recommendations