Advertisement

Atomistic simulation of laser ablation of gold: Effect of pressure relaxation

  • G. E. Norman
  • S. V. Starikov
  • V. V. Stegailov
Atoms, Molecules, Optics

Abstract

The process of ablation of a gold target by femto- and picosecond laser radiation pulses has been studied by numerical simulations using an atomistic model with allowance for the electron subsystem and the dependence of the ion-ion interaction potential on the electron temperature. Using this potential, it is possible to take into account the change in the physical properties of the ion subsystem as a result of heating of the electron subsystem. The results of simulations reveal a significant difference between the characteristics of metal ablation by laser pulses of various durations. For ablation with subpicosecond pulses, two mechanisms of metal fracture related to the evolution of electronic pressure in the system are established.

Keywords

Laser Ablation Electron Temperature Atomistic Simulation Electron Subsystem Embed Atom Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments, and Applications (Pan Stanford, Temasek, 2011).Google Scholar
  2. 2.
    A. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, Opt. Lett. 34, 941 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    N. M. Bulgakova, R. Stoyan, and A. Rozenfel’d, Kvantovaya Elektron. (Moscow) 40, 966 (2010).CrossRefGoogle Scholar
  4. 4.
    Z. Lin, L. Zhigilei, and V. Celli, Phys. Rev. B: Condens. Matter 77, 075133 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    R. Ernstorfer, M. Hard, C. Hebeisen, G. Sciaini, T. Dartigalongue, and R. J. D. Miller, Science (Washington) 323, 1033 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. Vorobyev and C. Guo, Phys. Rev. B: Condens. Matter 72, 195422 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    J. Krzywinski, R. Sobierajski, M. Jurek, R. Nietubyc, J. B. Pelka, L. Juha, M. Bittner, V. Létal, V. Vorlí ek, A. Andrejczuk, J. Feldhaus, B. Keitel, E. L. Saldin, E. A. Schneidmiller, R. Treusch, and M. V. Yurkov, J. Appl Phys. 101, 043107 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    S. V. Starikov, V. V. Stegailov, G. E. Norman, V. E. Fortov, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, E. Ochi, T. Imazono, T. Kavachi, S. Tamotsu, T. A. Pikuz, I. Yu. Skobelev, and A. Ya. Faenov, JETP Lett. 93(11), 642 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, JETP 107(1), 1 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, and E. Audouard, Phys. Rev. B: Condens. Matter 71, 165406 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    B. Chimier, V. Tikhonchuk, and L. Hallo, Appl. Phys. A 92, 843 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    M. Povarnitsyn, T. Itina, K. Khishchenko, and P. Levashov, Phys. Rev. Lett. 103, 195002 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    C. Schafer and H. Urbassek, Phys. Rev. B: Condens. Matter 66, 115404 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    D. Ivanov and L. Zhigilei, Phys. Rev. B: Condens. Matter 68, 064114 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    B. Demaske, V. Zhakhovsky, N. Inogamov, and I. Oleynik, Phys. Rev. B: Condens. Matter 82, 064113 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    W. Hu, Y. C. Shin, and G. King, Phys. Rev. B: Condens. Matter 82, 094111 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    A. M. Rutherford and D. M. Duffy, J. Phys.: Condens. Matter 19, 496201 (2007).CrossRefGoogle Scholar
  19. 19.
    V. Recoules, J. Clérouin, G. Zérah, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    V. Stegailov, Contrib. Plasma Phys. 50, 31 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    F. Bottin and G. Zerah, Phys. Rev. B: Condens. Matter 74, 174114 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    S. Khakshouri, D. Alfe, and D. Duffy, Phys. Rev. B: Condens. Matter 78, 224304 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    G. Gurtubay, J. M. Pitarke, and P. Echenique, Phys. Rev. B: Condens. Matter 69, 245106 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    J. Chen, D. Tzou, and J. Beraun, Appl. Phys. Lett. 46, 307 (2006).Google Scholar
  25. 25.
    Y. Gan and J. Chen, Appl. Phys. Lett. 94, 201116 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    R. Ernstorfer, M. Hard, C. Hebeisen, G. Sciaini, T. Dartigalongue, and R. J. D. Miller, Science (Washington) 323, 1033 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    M. Daw and M. Baskes, Phys. Rev. Lett. 50, 1285 (1983).ADSCrossRefGoogle Scholar
  28. 28.
    M. Daw, S. Foiles, and M. Baskes, Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
  29. 29.
    P. Brommer and F. Gahler, Modell. Simul. Mater. Sci. Eng. 15, 295 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    F. Ercolessi and J. Adams, Europhys. Lett. 26, 583 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    A. B. Belonoshko, Geochim. Cosmochim. Acta 58, 4039 (1994).ADSCrossRefGoogle Scholar
  33. 33.
    S. Starikov and V. Stegailov, Phys. Rev. B: Condens. Matter 106, 955 (2009).Google Scholar
  34. 34.
    A. Lankin and G. Norman, J. Phys. A: Math. Theor. 42, 214032 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995); http://lammps.sandia.gov/index.html.ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, JETP Lett. 87(8), 423 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • G. E. Norman
    • 1
    • 2
  • S. V. Starikov
    • 1
    • 2
  • V. V. Stegailov
    • 1
    • 2
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudny, Moscow oblastRussia

Personalised recommendations