Advertisement

Journal of Experimental and Theoretical Physics

, Volume 114, Issue 6, pp 1052–1057 | Cite as

On the role of flexoeffect in synchronization of electroconvective roll oscillations in nematics

  • E. S. Batyrshin
  • A. P. Krekhov
  • O. A. Scaldin
  • V. A. Delev
Statistical, Nonlinear, and Soft Matter Physics

Abstract

We describe the dynamics of zigzag oscillations in a system of convective rolls in a nematic liquid crystal above the electroconvection threshold under the action of an ac voltage with a biased position of the mean value. It is found that an increase in the contribution from the constant component leads to a substantial increase in the spatiotemporal ordering of zigzag rolls and their synchronization with the homogeneous twist mode. The results confirm the flexoelectric mechanism of locking.

Keywords

Nematic Liquid Crystal Convective Roll Soft Matter Phys Supercritical Region MBBA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Cross and H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009).zbMATHGoogle Scholar
  2. 2.
    Pattern Formation in Liquid Crystals, Ed. by Á. Buka and L. Kramer (Springer, New York, 1996).Google Scholar
  3. 3.
    P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Oxford, 1974; Mir, Moscow, 1977).Google Scholar
  4. 4.
    E. F. Carr, Mol. Cryst. Liq. Cryst. 7, 253 (1969).CrossRefGoogle Scholar
  5. 5.
    W. Helfrich, J. Chem. Phys. 51, 4092 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    E. Dubois-Violette, P. G. de Gennes, and O. Parodi, J. Phys. (Paris) 32, 305 (1971).CrossRefGoogle Scholar
  7. 7.
    E. Dubois-Violette, J. Phys. (Paris) 33, 95 (1972).CrossRefGoogle Scholar
  8. 8.
    E. Bodenschatz, W. Zimmermann, and L. Kramer, J. Phys. (Paris) 49, 1875 (1988).CrossRefGoogle Scholar
  9. 9.
    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Taylor and Francis, London, 1991).Google Scholar
  10. 10.
    Á. Buka, N. Éber, W. Pesch, and L. Kramer, in Self-Assembly, Pattern Formation, and Growth Phenomena in Nano-Systems, Ed. by A. A. Golovin and A. A. Nepomnyashchy (Springer, Dordrecht, 2006), p. 55.Google Scholar
  11. 11.
    Á. Buka, N. Éber, W. Pesch, and L. Kramer, Phys. Rep. 448, 115 (2007).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    E. Kochowska, S. Németh, G. Pelzl, and Á. Buka, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 011711 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    D. Wiant, J. T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, and T. Tóth-Katona, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 041712 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and Á. Buka, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 021705 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    A. Krekhov, W. Pesch, and Á. Buka, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83, 051706 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    T. Tóth-Katona, N. Éber, Á. Buka, and A. Krekhov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 036306 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 046215 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    E. Plaut, W. Decker, A. G. Rossberg, L. Kramer, W. Pesch, A. Belaidi, and R. Ribotta, Phys. Rev. Lett. 79, 2367 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    E. Plaut and W. Pesch, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 59, 1747 (1999).MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Rudroff, H. Zhao, L. Kramer, and I. Rehberg, Phys. Rev. Lett. 81, 4144 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    S. Rudroff, V. Frette, and I. Rehberg, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 59, 1814 (1999).CrossRefGoogle Scholar
  22. 22.
    M. Dennin, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 6780 (2000).CrossRefGoogle Scholar
  23. 23.
    S. Hirata and T. Tako, Jpn. J. Appl. Phys. 20, L459 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    A. N. Chuvyrov and V. G. Chigrinov, Sov. Phys. JETP 60(1), 101 (1984).Google Scholar
  25. 25.
    V. A. Delev, O. A. Scaldin, and A. N. Chuvyrov, Liq. Cryst. 12, 441 (1992).CrossRefGoogle Scholar
  26. 26.
    V. A. Delev, O. A. Skaldin, and A. N. Chuvyrov, Sov. Phys. Crystallogr. 37(6), 854 (1992).Google Scholar
  27. 27.
    E. S. Batyrshin, V. A. Delev, and A. N. Chuvyrov, Crystallogr. Rep. 44(3), 506 (1999).ADSGoogle Scholar
  28. 28.
    V. A. Delev, E. S. Batyrshin, O. A. Scaldin, and A. N. Chuvyrov, Mol. Cryst. Liq. Cryst. 329, 499 (1999).CrossRefGoogle Scholar
  29. 29.
    V. A. Delev, O. A. Scaldin, E. S. Batyrshin, and E. G. Axelrod, Tech. Phys. 56(1), 8 (2011).CrossRefGoogle Scholar
  30. 30.
    H. Amm, R. Stannarius, and A. G. Rossberg, Physica D (Amsterdam) 126, 171 (1999).ADSGoogle Scholar
  31. 31.
    D. Funfschilling, B. Sammuli, and M. Dennin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 016207 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    S.-Q. Zhou and G. Ahlers, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 046212 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    Yu. P. Bobylev and S. A. Pikin, Sov. Phys. JETP 45(1), 195 (1977).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. S. Batyrshin
    • 1
  • A. P. Krekhov
    • 1
  • O. A. Scaldin
    • 1
  • V. A. Delev
    • 1
  1. 1.Institute of Molecular and Crystal Physics, Ufa Research CenterRussian Academy of SciencesUfaRussia

Personalised recommendations