On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with “blinding” of avalanche photodetectors

  • S. N. Molotkov
Atoms, Molecules, Optics


The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Three protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.


Coherent State Quantum Cryptography Photon Detector Zehnder Interferometer Reception Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. K. Wooters and W. H. Zurek, Nature (London) 299, 802 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    S. Wiesner, SIGACT News 15, 78 (1983).CrossRefGoogle Scholar
  3. 3.
    C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, December 9–12, 1984 (Bangalore, 1984), p. 175.Google Scholar
  4. 4.
    C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, arXiv:quant-ph/0101098; Rev. Mod. Phys. 74, 145 (2002).Google Scholar
  6. 6.
    V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Phys. Rev. Lett. 85, 1330 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    D. Dieks, Phys. Lett. A 126, 303 (1988); I. D. Ivanovic, Phys. Lett. A 123, 257 (1987); A. Peres, Phys. Lett. A 128, 19 (1988); G. Jaeger and A. Shimony, Phys. Lett. A 197, 83 (1995).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A. Chefles, Phys. Lett. A 239, 339 (1998); P. Raynal, arXiv:quant-ph/0611133.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photonics 4, 686 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Korol’kov, K. G. Katamadze, S. P. Kulik, and S. N. Molotkov, JETP 110(4), 561 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    V. Makarov, A. Anisimov, and S. Sauge, arXiv:quant-ph/0809.3408; V. Makarov and J. Skaar, arXiv:quant-ph/0702262.Google Scholar
  13. 13.
    V. Scarani, A. Acín, G. Ribordy, and N. Gisin, Phys. Rev. Lett. 92, 057901-1 (2004); A. Acín, N. Gisin, and V. Scarani, arXiv:quant-ph/0302037.ADSGoogle Scholar
  14. 14.
    D. Bruss, arXiv:quant-ph/9805019; Go Kato and Kiyoshi Tamaki, arXiv:quant-ph/1008.4663; Hoi-Kwong Lo, arXiv:quant-ph/0102.138.Google Scholar
  15. 15.
    K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002); E. Waks, H. Takesue, and Y. Yamamoto, arXiv:quant-ph/0508112; Kai Wen, K. Tamaki, and Y. Yamamoto, arXiv:quant-ph/0806.2864; D. Dodson, M. Fujiwara, P. Grangier, M. Hayashi, K. Imafuku, K. Kitayama, P. Kumar, C. Kurtsiefer, G. Lenhart, N. Luetkenhaus, T. Matsumoto, W. J. Munro, T. Nishioka, M. Peev, M. Sasaki, Y. Sata, A. Takada, M. Takeoka, K. Tamaki, H. Tanaka, Y. Tokura, A. Tomita, M. Toyoshima, R. van Meter, A. Yamagishi, Y. Yamamoto, and A. Yamamura, arXiv:quant-ph/0905.4325.ADSCrossRefGoogle Scholar
  16. 16.
    N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, arXiv:quant-ph/0411022; D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, arXiv:quant-ph/0506097.Google Scholar
  17. 17.
    A. Ekert, Phys. Rev. Lett. 67, 661 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    W.-Y. Hwang, Phys. Rev. Lett. 95, 057901-1 (2003).ADSGoogle Scholar
  19. 19.
    L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, arXiv:quant-ph/1009.2663; S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, arXiv:quant-ph/0809.3408; C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, Ch. Marquardt, V. Makarov, and G. Leuchs, New J. Phys. 13, 013043 (2011); I. Gerhardt, Qin Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, arXiv:quant-ph/1011.0105; L. Lydersen, J. Skaar, and V. Makarov, arXiv:quant-ph/1012.4366; V. Makarov, New J. Phys. 11, 065003 (2009); V. Makarov, arXiv:quant-ph/0707.3987; V. Makarov, A. Anisimov, and J. Skaar, arXiv:quant-ph/0511032.Google Scholar
  20. 20.
    Z. L. Yuan, J. F. Dynes, and A. J. Shields, Nat. Photonics 4, 800 (2010); L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photonics 4, 801 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    S. N. Molotkov, S. P. Kulik, and A. I. Klimov, RF Patent No. 2339919 (June 15, 2007).Google Scholar
  22. 22.
    S. N. Molotkov and S. P. Kulik, RF Patent No. 2010130961 (July 23, 2010); S. N. Molotkov, JETP 106 (1), 1 (2008); D. A. Kronberg and S. N. Molotkov, JETP 109 (4), 557 (2009).Google Scholar
  23. 23.
    C. H. Bennett, G. Brassard, C. Crépeau, and U. Maurer, IEEE Trans. Inf. Theory 41, 1915 (1995).MATHCrossRefGoogle Scholar
  24. 24.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995; Fizmatlit, Moscow, 2000).Google Scholar
  25. 25.
    L. J. Wang, X. Y. Zou, and L. Mandel, Phys. Rev. A: At., Mol., Opt. Phys. 44, 4614 (1991).ADSCrossRefGoogle Scholar
  26. 26.
    S. N. Molotkov and S. P. Kulik, RF Patent No. 2325039 (June 6, 2006); S. N. Molotkov, JETP 112 (3), 370 (2011).Google Scholar
  27. 27.
    S. N. Molotkov, JETP Lett. 91(1), 48 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    C. G. B. Garrett and D. E. McCumber, Phys. Rev. A: At., Mol., Opt. Phys. 1, 305 (1970); S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982); A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999); D. L. Fisher and T. Tajima, Phys. Rev. Lett. 71, 4338 (1993); R. Y. Chiao, Phys. Rev. A: At., Mol., Opt. Phys. 48, R34 (1993); E. L. Bolda, R. Y. Chiao, and J. C. Garrison, Phys. Rev. A: At., Mol., Opt. Phys. 48, 3890 (1993); A. M. Steinberg and R. Y. Chiao, Phys. Rev. A: At., Mol., Opt. Phys. 49, 2970 (1994); V. W. Mitchell and R. Y. Chiao, Am. J. Phys. 66, 14 (1998); L. J. Wang, A. Kuzmich, and A. Dogariu, Nature (London) 406, 277 (2000); M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature (London) 425, 695 (2003); K. Kim, H. S. Moon, Ch. Lee, S. K. Kim, and J. B. Kim, Phys. Rev. A: At., Mol., Opt. Phys. 68, 013810 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    A. Sommerfeld, in L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).Google Scholar
  30. 30.
    S. N. Molotkov, JETP Lett. 91(12), 693 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Russian Federation Academy of CryptographyMoscowRussia
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations