Advertisement

Gauss-bonnet black holes and possibilities for their experimental search

  • S. O. Alexeyev
  • K. A. Rannu
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

Corollaries of gravity models with second-order curvature corrections in the form of a Gauss-Bonnet term and possibilities (or impossibilities) for their experimental search or observations are discussed. The full version of the four-dimensional Schwarzschild-Gauss-Bonnet black hole solution and the constraint on the possible minimal black hole mass following from this model are considered. Using our solution as a model for the final stages of Hawking evaporation of black holes with a low initial mass (up to 1015 g) whose lifetime is comparable to that of our Universe, we have revealed differences in the patterns of evaporation: we have obtained high values of the emitted energy and showed the impossibility of an experimental search for primordial black holes by their evaporation products. Scenarios for the evaporation of Gauss-Bonnet black holes in multidimensional gravity models and possibilities for their experimental search are also discussed.

Keywords

Black Hole Large Hadron Collider Bonnet Black Hole Solution Horizon Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. O. Alexeyev and M. V. Pomazanov, Phys. Rev. D: Part. Fields 55, 2110 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    S. O. Alexeyev, M. V. Sazhin, and M. V. Pomazanov, Int. J. Mod. Phys. D 10, 225 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    S. O. Alexeyev and M. V. Sazhin, Gen. Relativ. Gravitation 30, 1187 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    S. Alexeyev, A. Barrau, and K. Rannu, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 067503 (2009).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. O. Alexeyev, M. V. Sazhin, and O. S. Khovanskaya, Astron. Lett. 28(3), 139 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    S. O. Alexeyev, A. Barrau, G. Boudoul, O. Khovanskaya, and M. Sazhin, Classical Quantum Gravity 19, 4431 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    S. Alexeyev, A. Barrau, and J. Grain, Phys. Lett. B 584, 114 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    S. Alexeyev, A. Barrau, and J. Grain, Gravitation Cosmol. 11, 34 (2005).ADSzbMATHGoogle Scholar
  9. 9.
    S. Alexeyev, A. Barrau, and J. Grain, in Proceedings of the 13th International Seminar on High-Energy Physics “Quarks-2004,” Pushkinskie Gory, Pskov oblast, Russia, May 24–30, 2004, Ed. by D. G. Levkov, V. A. Matveev, and V. A. Rubakov (Pushkinskie Gory, 2004); http://quarks.inr.ac.ru/.
  10. 10.
    S. Alexeyev, N. Popov, A. Barrau, and J. Grain, J. Phys.: Conf. Ser. 33, 343 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    S. Alexeyev, N. Popov, A. Barrau, and J. Grain, in Proceedings of the 22nd Texas Symposium on Relativistic Astrophysics, Stanford, California, United States, December 13–17, 2004 (Stanford, 2004).Google Scholar
  12. 12.
    S. O. Alexeyev, N. N. Popov, T. S. Strunina, A. Barrau, and J. Grain, in Proceedings of the 14th International Seminar on High Energy Physics “Quarks-2006,” St. Petersburg, Russia, May 19–25, 2006, Ed. by V. A. Matveev and V. A. Rubakov (St. Petersburg, 2006); http://quarks.inr.ac.ru/.
  13. 13.
    S. O. Alexeyev and N. N. Popov, in Proceedings of the International Conference of the 11th Marcel Grossmann Meeting on General Relativity, Berlin, Germany, July 23–29, 2006, Ed. by H. Kleinetr, R. T. Jantzen, and R. Ruffini (World Scientific, Singapore, 2008), Part A, p. 1251.Google Scholar
  14. 14.
    S. Alexeyev, A. Popov, M. Startseva, A. Barrau, and J. Grain, JETP 106(4), 709 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    V. P. Frolov, M. A. Marko, and V. F. Mukhanov, Phys. Lett. B 216, 272 (1989).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, Phys. Rev. D: Part. Fields 54, 5049 (1996).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    D. L. Wiltshire, Phys. Lett. B 169, 39 (1986).MathSciNetADSGoogle Scholar
  18. 18.
    G. W. Gibbons and K. Maeda, Nucl. Phys. B 298, 741 (1988).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    C. Lanczos, Z. Phys. A 73, 147 (1932); C. Lanczos, Ann. Math. 39, 842 (1938).CrossRefGoogle Scholar
  20. 20.
    G. Stephenson, Nuovo Cimento 9, 263 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    P. W. Higgs, Nuovo Cimento 11, 816 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    D. Lovelock, J. Math. Phys. 12, 498 (1971).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    B. Zwiebach, Phys. Lett. B 156, 315 (1985); E. Poisson, Classical Quantum Gravity 8, 639 (1991); D. Witt, Phys. Rev. D: Part. Fields 38, 3000 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    D. Garfincle, G. Horowitz, and A. Strominger, Phys. Rev. D: Part. Fields 43, 3140 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Starobinsky, JETP Lett. 86(3), 157 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    S. Nojiri and S. D. Odintsov, J. Phys. A: Math. Theor. 40, 6725 (2007).ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    S. Mignemi and N. R. Stewart, Phys. Rev. D: Part. Fields 47, 5259 (1993).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. Wheeler, Nucl. Phys. 268, 737 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    J. Wheeler, Nucl. Phys. 273, 732 (1986).ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, Phys. Rev. D: Part. Fields 57, 6255 (1998).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    O. Khovanskaya, Gravitation Cosmol. 8, 197 (2002).MathSciNetADSzbMATHGoogle Scholar
  32. 32.
    E. Ellis and B. G. Schmidt, Gen. Relativ. Gravitation 8, 915 (1977).MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    S. W. Hawking and E. Ellis, Large-Scale Structure of the Space-Time (Cambridge University Press, Cambridge, 1973).zbMATHCrossRefGoogle Scholar
  34. 34.
    T. Torii, H. Yajima, and K. Maeda, Phys. Rev. D: Part. Fields 55, 261 (1995).Google Scholar
  35. 35.
    S. O. Alexeyev and O. S. Khovanskaya, Gravitation Cosmol. 6, 14 (2000).MathSciNetADSzbMATHGoogle Scholar
  36. 36.
    S. Massar and R. Parentani, Nucl. Phys. B 19, 2671 (2000).MathSciNetGoogle Scholar
  37. 37.
    M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    K. Srinivasan and T. Padamanabhan, Phys. Rev. D: Part. Fields 60, 24007 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    D. N. Page, Phys. Rev. D: Part. Fields 13, 198 (1976).ADSCrossRefGoogle Scholar
  40. 40.
    B. Kleinhaus and J. Kunz, Phys. Rev. Lett. 79, 1595 (1997).MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    I. D. Novikov and P. V. Frolov, Black Hole Physics: Basic Concepts and New Developments (Nauka, Moscow, 1986; Kluwer, Dordrecht, The Netherlands, 1998).Google Scholar
  42. 42.
    J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952).zbMATHGoogle Scholar
  43. 43.
    T. Pilling, in Talk at the 15th International Seminar on High-Energy Physics “Quarks-2008,” Sergiev Posad, Moscow oblast, Russia, May 23–29, 2008 (Sergiev Posad, 2008); arXiv:hep-th/0809.2701.Google Scholar
  44. 44.
    V. Akhmedova, T. Pilling, A. deGill, and D. Singleton, Phys. Lett. B 666, 269 (2008).MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    T. Pilling, Phys. Lett. B 660, 402 (2008).MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    L. D. Dedenko, G. F. Fedorova, T. M. Roganova, M. I. Pravdin, I. E. Sleptsov, V. A. Kolosov, A. V. Glushkov, D. S. Gorbunov, G. I. Rubtsov, and S. V. Troitsky, Phys. At. Nucl. 70(1), 170 (2007).CrossRefGoogle Scholar
  47. 47.
    C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1981; Energoatomizdat, Moscow, 1985).Google Scholar
  48. 48.
    C. M. Will and K. N. Nordtvert, Astrophys. J. 177, 757 (1972).MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    C. M. Will and K. N. Nordtvert, Astrophys. J. 177, 775 (1972).MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Y. Sirois, Nucl. Phys. B 216, 169 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    S. B. Giddings and S. Thomas, Phys. Rev. D: Part. Fields 65, 056010 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).ADSCrossRefGoogle Scholar
  53. 53.
    N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 429, 257 (1998).ADSGoogle Scholar
  54. 54.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998).ADSCrossRefGoogle Scholar
  55. 55.
    N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Rev. D: Part. Fields 59, 086004 (1999).ADSCrossRefGoogle Scholar
  56. 56.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. 57.
    S. B. Giddings and E. Katz, J. Math. Phys. 42, 3082 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    V. A. Rubakov, Phys.—Usp. 44(9), 871 (2001).ADSCrossRefGoogle Scholar
  59. 59.
    D. M. Eardley and S. B. Giddings, Phys. Rev. D: Part. Fields 66, 044011 (2002).MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    H. Yoshino and Y. Nambu, Phys. Rev. D: Part. Fields 66, 065004 (2002).MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985).ADSCrossRefGoogle Scholar
  62. 62.
    N. Deruelle and J. Madore, Mod. Phys. Lett. A 1, 237 (1986).MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    N. Deruelle and L. Farina-Busto, Phys. Rev. D: Part. Fields 41, 3696 (1990).MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    S. Nojiri, S. D. Odintsov, and S. Ogushi, Phys. Rev. D: Part. Fields 65, 023521 (2002).MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    M. E. Mavrotamos and J. Rizos, Phys. Rev. D: Part. Fields 62, 124004 (2000).ADSCrossRefGoogle Scholar
  66. 66.
    Y. M. Cho, I. P. Neupane, and P. S. Wesson, Nucl. Phys. B 621, 388 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  67. 67.
    B. C. Paul and S. Mukherjee, Phys. Rev. D: Part. Fields 42, 2595 (1990).ADSCrossRefGoogle Scholar
  68. 68.
    B. Abdesselam and N. Mohammedi, Phys. Rev. D: Part. Fields 65, 084018 (2002).MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    C. Charmousis and J. F. Dufaux, Classical Quantum Gravity 19, 4671 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  70. 70.
    J. E. Lidsey and N. J. Nunes, Phys. Rev. D: Part. Fields 67, 103510 (2003).MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    J. H. MacGibbon and B. R. Webber, Phys. Rev. D: Part. Fields 41, 3052 (1990).ADSCrossRefGoogle Scholar
  72. 72.
    M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 72, 957 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  73. 73.
    A. Padilla, Classical Quantum Gravity 20, 3129 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  74. 74.
    C. M. Harris and P. Kanti, J. High Energy Phys. (online) 0310, 014 (2003).MathSciNetADSCrossRefGoogle Scholar
  75. 75.
    R. G. Cai, Phys. Rev. D: Part. Fields 65, 084014 (2002).ADSCrossRefGoogle Scholar
  76. 76.
    P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, Phys. Rev. D: Part. Fields 54, 5049 (1996).MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    A. Barrau, G. Boudoul, F. Donato, D. Maurin, P. Salati, and R. Taillet, Astron. Astrophys. 388, 676 (2002).ADSCrossRefGoogle Scholar
  78. 78.
    R. Emparan, G. T. Horowitz, and R. C. Myers, Phys. Rev. Lett. 85, 499 (2000).MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    T. Tjostrand, Comput. Phys. Commun. 82, 74 (1994).ADSCrossRefGoogle Scholar
  80. 80.
    ATLAS: Detector and Physics Performance Technical Design Report, Vol. 1, CERN-LHCC-99-14, ATLAS-TDR-14 (1999).Google Scholar
  81. 81.
    D. N. Page, Phys. Rev. D: Part. Fields 14, 3260 (1976).ADSCrossRefGoogle Scholar
  82. 82.
    R. C. Myers and M. J. Perry, Ann. Phys. (New York) 172, 304 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  83. 83.
    G. W. Gibbons, H. Lu, D. N. Page, and C. N. Pope, Phys. Rev. Lett. 93, 171102 (2004).ADSCrossRefGoogle Scholar
  84. 84.
    A. Anabalóon, N. Deruelle, Y. Morisawa, J. Oliva, M. Sasaki, D. Tempo, and R. Troncoso, Classical Quantum Gravity 26, 065002 (2009).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations