On the ability of resonant diffraction gratings to differentiate a pulsed optical signal

Atoms, Molecules, Optics


The passage of an optical pulse through a resonant grating is considered. The conditions under which the resonant grating differentiates the envelope of the incident pulse are determined. It is shown that the necessary condition for computing the k-order derivative is the presence of k resonances in the transmission spectrum of the grating in the vicinity of the central frequency of the incident pulse. A method is described for constructing the stacked structure for computing the kth derivative on the basis of repetition of the structure for computing the first derivative. The results of numerical simulation of diffraction of the pulse from the analyzed structure for computing the first, second, and third derivative are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kulishov and J. Azaña, Opt. Express 15, 6152 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    M. Kulishov and J. Azaña, Opt. Lett. 30, 2700 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    R. Slavík, Y. Park, M. Kulishov, and J. Azaña, Opt. Lett. 34, 3116 (2009).CrossRefGoogle Scholar
  5. 5.
    L. M. Rivas, S. Boudreau, Y. Park, R. Slavík, S. LaRochelle, A. Carballar, and J. Azaña, J. Opt. Lett. 34, 1792 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    M. Li, D. Janner, J. Yao, and V. Pruneri, Opt. Express 17, 19798 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Preciado and M. A. Muriel, Opt. Lett. 33, 2458 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    H. Li, T. Kumagai, K. Ogusu, and Y. Sheng, J. Opt. Soc. Am. B 21, 1929 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B: Condens. Matter 66, 045102 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, Phys. Rev. B: Condens. Matter 72, 045138 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    D. A. Bykov, L. L. Doskolovich, V. A. Soifer, and N. L. Kazanskiy, JETP 111(6), 967 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, Phys. Rev. B: Condens. Matter 67, 085415 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    N. A. Gippius, T. Weiss, S. G. Tikhodeev, and H. Giessen, Opt. Express 18, 7569 (2010).CrossRefGoogle Scholar
  16. 16.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, London, 1959; Nauka, Moscow, 1973).MATHGoogle Scholar
  17. 17.
    V. Lomakin and E. Michielssen, IEEE Trans. Antennas Propag. 54, 970 (2006).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    R. Magnusson, D. Shin, and Z. S. Liu, Opt. Lett. 23, 612 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    T. Tamir and S. Zhang, J. Opt. Soc. Am. A 14, 1607 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    T. Sun, J. Ma, J. Wang, Y. Jin, H. He, J. Shao, and Z. Fan, J. Opt. A: Pure Appl. Opt. 10, 125003 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    J.-F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical Optimization, Theoretical and Numerical Aspects (Springer, New York, 2003).MATHGoogle Scholar
  22. 22.
    M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    L. Li, J. Opt. Soc. Am. A 13, 1870 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    W. Nakagawa, R.-C. Tyan, P.-C. Sun, F. Xu, and Y. Fainman, J. Opt. Soc. Am. A 18, 1072 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    N. V. Smirnov and I. V. Dunin-Barkovskii, Course of the Probability Theory and Mathematical Statistics for Engineering Applications (Nauka, Moscow, 1965) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. A. Bykov
    • 1
    • 2
  • L. L. Doskolovich
    • 1
    • 2
  • V. A. Soifer
    • 1
    • 2
  1. 1.Image Processing Systems InstituteRussian Academy of SciencesSamaraRussia
  2. 2.Samara State Aerospace UniversitySamaraRussia

Personalised recommendations