On the electrodynamics of an absorbing uniaxial nonpositive determined (indefinite) medium

  • D. G. Baranov
  • A. P. Vinogradov
  • K. R. Simovskii
  • I. S. Nefedov
  • S. A. Tret’yakov
Atoms, Molecules, Optics


It is shown that a surface plasmon, whose decay length infinitely increases as it approaches the threshold frequency, can propagate over the surface of a half-space filled with a uniaxial indefinite absorbing metamaterial. At the threshold frequency itself, a new phenomenon is observed-upon incidence of a TM-polarized wave on the absorbing material, a real Brewster angle exists, and in the case of a plate made of such a metamaterial, “reflectionless” reflection is observed when two plane waves are incident on the plate from two sides. In the latter case, complete destructive interference of reflected and transmitted waves occurs.


Propagation Length Decay Length Poynting Vector Ohmic Loss Incident Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Agranovich and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam, 1982; Nauka, Moscow, 1985).Google Scholar
  2. 2.
    N. L. Dmitruk, V. G. Litovchenko, and V. L. Strizhevskii, Surface Polaritons in Semiconductors and Dielectrics (Naukova Dumka, Kiev, 1989) [in Russian].Google Scholar
  3. 3.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).Google Scholar
  4. 4.
    V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).Google Scholar
  5. 5.
    Plasmonic: Nanoguides and Circuits, Ed. by S. I. Bozhevolnyi (Pan Stanford, Singapore, 2009).Google Scholar
  6. 6.
    S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).Google Scholar
  7. 7.
    W. Cai and V. Shalaev, Optical Metamaterials (Springer, New York, 2010).CrossRefGoogle Scholar
  8. 8.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, Berlin, 1988).Google Scholar
  9. 9.
    S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, and Applications (Springer, Dordrecht, 2009).CrossRefGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).Google Scholar
  11. 11.
    P. S. Epstein, Proc. Natl. Acad. Sci. USA 40, 1158 (1954).ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    V. V. Bryksin, D. N. Mirlin, and I. I. Reshina, JETP Lett. 16(8), 315 (1972).ADSGoogle Scholar
  13. 13.
    D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    A. P. Vinogradov, Electrodynamics of Composite Materials (URSS, Moscow, 2003) [in Russian].Google Scholar
  15. 15.
    G. W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, 2004).Google Scholar
  16. 16.
    P. B. Johnson and R. W. Christy, Phys. Rev. B: Solid State 6, 4370 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1988) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. G. Baranov
    • 1
  • A. P. Vinogradov
    • 1
  • K. R. Simovskii
    • 2
  • I. S. Nefedov
    • 2
  • S. A. Tret’yakov
    • 2
  1. 1.Institute of Theoretical and Applied ElectrodynamicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Radio Science, School of Electrical and Electronic EngineeringAalto UniversityAALTOFinland

Personalised recommendations