Advertisement

Fermionic screenings and line bundle twisted chiral de Rham complex on CY manifolds

  • S. E. Parkhomenko
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We present a generalization of Borisov’s construction of the chiral de Rham complex in the case of the line-bundle-twisted chiral de Rham complex on a Calabi-Yau hypersurface in a projective space. We generalize the differential associated with a polytope Δ of the projective space ℙ d − 1 by allowing nonzero modes for the screening currents forming this differential. It is shown that the numbers of screening current modes define the support function of the toric divisor of a line bundle on ℙ d − 1 that twists the chiral de Rham complex on the Calabi-Yau hypersurface.

Keywords

Line Bundle Elliptic Genus Vertex Operator Algebra Toric Manifold Hodge Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. B. Anderson, Y. H. He, and A. Lukas, J. High Energy Phys. (online) 0707, 049 (2007); L. B. Anderson, Y. H. He, and A. Lukas, arXiv:hep-th/0702210v2; L. B. Anderson, Y. H. He, and A. Lukas, arXiv:hep-th/0805.2875v1; L. B. Anderson, Y. H. He, and A. Lukas, arXiv:hep-th/0911.0865v1.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    D. Gepner, Phys. Lett. B 199, 380 (1987); D. Gepner, Nucl. Phys. B 296, 757 (1988).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J. A. Harvey and G. Moore, arXiv:hep-th/9609017v2.Google Scholar
  4. 4.
    L. A. Borisov, arXiv:math.AG/9809094.Google Scholar
  5. 5.
    L. A. Borisov and A. Libgober, arXiv:math.AG//9904126v1.Google Scholar
  6. 6.
    F. Malikov, V. Schechtman, and A. Vaintrob, arXiv:alggeom/9803041.Google Scholar
  7. 7.
    V. Gorbounov and F. Malikov, arXiv:math.AG//0308114.Google Scholar
  8. 8.
    S. E. Parkhomenko, JETP 111(3), 375 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Danilov, Russ. Math. Surv. 33, 97 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    W. Fulton, Introduction to Toric Varieties (Princeton University Press, Princeton, New Jersey, United States, 1993).zbMATHGoogle Scholar
  11. 11.
    L. Borisov and R. Kaufmann, arXiv:math.AG/1102. 5444v1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovka, Moscow oblastRussia

Personalised recommendations