Fermionic screenings and line bundle twisted chiral de Rham complex on CY manifolds

Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We present a generalization of Borisov’s construction of the chiral de Rham complex in the case of the line-bundle-twisted chiral de Rham complex on a Calabi-Yau hypersurface in a projective space. We generalize the differential associated with a polytope Δ of the projective space ℙd − 1 by allowing nonzero modes for the screening currents forming this differential. It is shown that the numbers of screening current modes define the support function of the toric divisor of a line bundle on ℙd − 1 that twists the chiral de Rham complex on the Calabi-Yau hypersurface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. B. Anderson, Y. H. He, and A. Lukas, J. High Energy Phys. (online) 0707, 049 (2007); L. B. Anderson, Y. H. He, and A. Lukas, arXiv:hep-th/0702210v2; L. B. Anderson, Y. H. He, and A. Lukas, arXiv:hep-th/0805.2875v1; L. B. Anderson, Y. H. He, and A. Lukas, arXiv:hep-th/0911.0865v1.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    D. Gepner, Phys. Lett. B 199, 380 (1987); D. Gepner, Nucl. Phys. B 296, 757 (1988).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J. A. Harvey and G. Moore, arXiv:hep-th/9609017v2.Google Scholar
  4. 4.
    L. A. Borisov, arXiv:math.AG/9809094.Google Scholar
  5. 5.
    L. A. Borisov and A. Libgober, arXiv:math.AG//9904126v1.Google Scholar
  6. 6.
    F. Malikov, V. Schechtman, and A. Vaintrob, arXiv:alggeom/9803041.Google Scholar
  7. 7.
    V. Gorbounov and F. Malikov, arXiv:math.AG//0308114.Google Scholar
  8. 8.
    S. E. Parkhomenko, JETP 111(3), 375 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Danilov, Russ. Math. Surv. 33, 97 (1978).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    W. Fulton, Introduction to Toric Varieties (Princeton University Press, Princeton, New Jersey, United States, 1993).MATHGoogle Scholar
  11. 11.
    L. Borisov and R. Kaufmann, arXiv:math.AG/1102. 5444v1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovka, Moscow oblastRussia

Personalised recommendations