Advertisement

Journal of Experimental and Theoretical Physics

, Volume 113, Issue 4, pp 628–636 | Cite as

Possible observational manifestations of wormholes in the Brans-Dicke theory

  • S. O. Alexeyev
  • K. A. Rannu
  • D. V. Gareeva
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

The energy flux emitted during the accretion of matter onto a wormhole in the Brans-Dicke theory has been calculated. This characteristic is compared with its values calculated previously for wormholes in general relativity and for a Schwarzschild black hole.

Keywords

Black Hole Energy Flux Event Horizon Accretion Disk Accretion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Flamm, Phys. Z. 17, 448 (1916).Google Scholar
  2. 2.
    A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    K. A. Bronnikov, Vokrug Sveta, No. 5, 2764 (2004).Google Scholar
  4. 4.
    J. A. Wheeler, Phys. Rev. 97, 511 (1955).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    C. W. Misner and J. A. Wheeler, Ann. Phys. (New York) 2, 525 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    J. A. Wheeler, Ann. Phys. (New York) 2, 604 (1957).ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    H. G. Ellis, J. Math. Phys. 14, 104 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    K. A. Bronnikov, Acta Phys. Pol., B 4, 251 (1973).MathSciNetGoogle Scholar
  9. 9.
    G. Clement, Gen. Relativ. Gravitation 16, 131 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    G. Clement, Gen. Relativ. Gravitation 16, 477 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    G. Clement, Gen. Relativ. Gravitation 16, 491 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    B. Bhawal and S. Kar, Phys. Rev. D: Part. Fields 46, 2464 (1992).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    G. Dotti, J. Oliva, and R. Troncoso, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 75, 024002 (2007).CrossRefGoogle Scholar
  14. 14.
    L. A. Anchordoqui and S. E. P. Bergliaffa, Phys. Rev. D: Part. Fields 62, 067502 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    K. A. Bronnikov and S.-W. Kim, Phys. Rev. D: Part. Fields 67, 064027 (2003).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    M. La Camera, Phys. Lett. B 573, 27 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    F. S. N. Lobo, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 75, 064027 (2007).MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Garattini and F. S. N. Lobo, Classical Quantum Gravity 24, 2401 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    S. Sushkov, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 71, 043520 (2005).CrossRefGoogle Scholar
  20. 20.
    A. A. Shatskii, Phys.-Usp. 52(8), 811 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Shatskii, I. D. Novikov, and N. S. Kardashev, Phys.-Usp. 51(5), 457 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    I. D. Novikov, N. S. Kardashev, and A. A. Shatskii, Phys.-Usp. 50(9), 965 (2008).ADSGoogle Scholar
  23. 23.
    C. M. Urry and P. Padovani, Publ. Astron. Soc. Pac. 107, 803 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    T. Harko, Z. Kovacs, and F. S. N. Lobo, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 78, 084005 (2008).CrossRefGoogle Scholar
  25. 25.
    T. Harko, Z. Kovacs, and F. S. N. Lobo, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 064001 (2009).CrossRefGoogle Scholar
  26. 26.
    M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (2003).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    M. Visser, Lorentzian Wormholes: From Einstein to Hawking (American Institute of Physics Press, New York, 1995).Google Scholar
  28. 28.
    S. M. Carroll and M. Hoffman, Phys. Rev. D: Part. Fields 68, 023509 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).zbMATHCrossRefGoogle Scholar
  30. 30.
    B. Carter, arXiv:gr-qc/0205010.Google Scholar
  31. 31.
    M. Miyoshi, J. Moran, J. Herrnstein, L. Greenhill, N. Nakai, P. Diamond, and M. Inoue, Nature (London) 373, 127 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    D. N. Page and K. S. Thorn, Astrophys. J. 191, 499 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    A. G. Agnese and M. La Camera, Phys. Rev. D: Part. Fields 51, 2011 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    A. Bhadra and K. Sarkar, Gen. Rel. Grav. 37, 2189 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    A. Bhadra and K. Sarkar, Mod. Phys. Lett. A 20, 1831 (2005).ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425, 374 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations