Magnetic field correlations in random flow with strong steady shear

  • I. V. Kolokolov
  • V. V. LebedevEmail author
  • G. A. Sizov
Statistical, Nonlinear, and Soft Matter Physics


We analyze the magnetic kinematic dynamo in a conducting fluid where a stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, and their growth rates and scaling behavior are established. General assertions are illustrated by the explicit solution of a model where the velocity field is short-correlated in time.


Magnetic Field Lyapunov Exponent Shear Flow Pair Correlation Function Diffusion Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (Massachusetts Institute of Technology Press, Cambridge, Massachusetts, United States, 1975), Vols. 1 and 2.Google Scholar
  2. 2.
    U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, New York, 1995).zbMATHGoogle Scholar
  3. 3.
    S. I. Vainshtein and Ya. B. Zel’dovich, Usp. Fiz. Nauk 106, 431 (1972) [Sov. Phys.-Usp. 15, 159 (1972)].ADSCrossRefGoogle Scholar
  4. 4.
    H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978).Google Scholar
  5. 5.
    E. N. Parker, Cosmical Magnetic Fields: Their Origin and Activity (Clarendon, Oxford, 1979).Google Scholar
  6. 6.
    Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, The Almighty Chance (World Scientific, Singapore, 1990).CrossRefGoogle Scholar
  7. 7.
    S. Childress and A. Gilbert, Stretch Twist Fold: The Fast Dynamo (Springer, Berlin, 1995).zbMATHGoogle Scholar
  8. 8.
    G. Rüdiger and R. Hollerbach, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory (Wiley, New York, 2004).CrossRefGoogle Scholar
  9. 9.
    Fluid Dynamics and Dynamos in Astrophysics and Geophysics, Ed. by A. M. Soward, Ch. A. Jones, D. W. Hughes, and N. O. Weiss (CRC Press, Boca Raton, Florida, United States, 2005).zbMATHCrossRefGoogle Scholar
  10. 10.
    E. T. Vishniac, A. Lazarian, and J. Cho, Problems and Progress in Astrophysical Dynamos (Springer, Berlin, 2008).Google Scholar
  11. 11.
    A. A. Schekochihin, S. C. Cowley, S. F. Taylor, L. Maron, and J. C. McWilliams, Astrophys. J. 612, 276 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    R. Kraichnan and S. Nagarajan, Phys. Fluids 10, 859 (1967).ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 53(5), 1806 (1967) [Sov. Phys. JETP 26 (5), 1031 (1967)].Google Scholar
  15. 15.
    M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassola, Phys. Rev. Lett. 83, 4065 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    V. Urpin, Geophys. Astrophys. Fluid Dyn. 95, 269 (2001).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987).Google Scholar
  18. 18.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988).Google Scholar
  19. 19.
    J. L. Lumley, Symp. Math. 9, 315 (1972).Google Scholar
  20. 20.
    E. Balkovsky, A. Fouxon, and V. Lebedev, Phys. Rev. Lett. 84, 4765 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, J. Fluid Mech. 531, 251 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    A. Groisman and V. Steinberg, Nature (London) 405, 53 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    A. Groisman and V. Steinberg, Phys. Rev. Lett. 86, 934 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    A. Groisman and V. Steinberg, Nature (London) 410, 905 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    V. R. Kogan, I. V. Kolokolov, and V. V. Lebedev, J. Phys. A: Math. Gen. 43, 182001 (2010).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, London, 1984).Google Scholar
  27. 27.
    M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 56, 5483 (1997).MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. B. Pope, Ann. Rev. Fluid Mech. 26, 23 (1994).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    H. Furstenberg, Trans. Am. Math. Soc. 108, 377 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    I. Goldhirsch, P.-L. Sulem, and S. A. Orszag, Physica D (Amsterdam) 27, 311 (1987).MathSciNetADSzbMATHGoogle Scholar
  31. 31.
    E. Balkovsky and A. Fouxon, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 4164 (1999).MathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Ellis, Entropy Large Deviations and Statistical Mechanics (Springer, New York, 1985).zbMATHCrossRefGoogle Scholar
  33. 33.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Pergamon, London, 1980).Google Scholar
  34. 34.
    E. Balkovsky, G. Falkovich, V. Lebedev, and M. Lysiansky, Phys. Fluids 11, 2269 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    M. Chertkov, G. Falkovich, V. Kolokolov, and V. Lebedev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 52, 4924 (1995).MathSciNetCrossRefGoogle Scholar
  36. 36.
    K. S. Turitsyn, Zh. Eksp. Teor. Fiz. 132(3), 746 (2007) [JETP 105 (3), 655 (2007)].Google Scholar
  37. 37.
    G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, 4896 (1996).CrossRefGoogle Scholar
  38. 38.
    Ya. B. Zeldovich, Zh. Eksp. Teor. Fiz. 31, 154 (1956) [Sov. Phys. JETP 4, 460 (1956)].Google Scholar
  39. 39.
    Ya. B. Zel’dovich and A. A. Ruzmaikin, Zh. Eksp. Teor. Fiz. 78(3), 980 (1980) [Sov. Phys. JETP 51 (3), 493 (1980)].MathSciNetADSGoogle Scholar
  40. 40.
    Ya. B. Zel’dovich, A. A. Ruzmaikin, S. A. Molchanov, and D. D. Sokolov, J. Fluid Mech. 144, 1 (1984).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. V. Kolokolov
    • 1
  • V. V. Lebedev
    • 1
    Email author
  • G. A. Sizov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations