Advertisement

Structure-sensitive mechanism of nanographene failure

  • E. F. ShekaEmail author
  • N. A. Popova
  • V. A. Popova
  • E. A. Nikitina
  • L. H. Shaymardanova
Solids and Liquids

Abstract

The quantum-mechanochemical-reaction-coordinate approach has disclosed atomically matched peculiarities that accompany the deformation-failure-rupture process occurring in nanographenes. The high stiffness of the graphene body is provided by the benzenoid unit. The anisotropy of the unit mechanical behavior in combination with different configurations of the unit packing with respect to the body C-C bond chains forms the ground for the structure-sensitive mechanism of the mechanical behavior that is drastically different for two different deformation modes. The zig-zag deformation mode is particularly manifested with the formation of one-atom chains. The approach allows tracing a deformation-stimulated change in the chemical reactivity of both the nanographene body and its individual atoms.

Keywords

Deformation Mode Tensile Deformation Response Force Atom Chain Benzene Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B: Condens. Matter 64, 235406 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    F. Liu, P. Ming, and J. Li, Phys. Rev. B: Condens. Matter 76, 064120 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. Hemmasizadeh, M. Mahzoon, E. Hadi, and R. Khadan, Thin Solid Films 516, 7636 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    X. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Phys. Rev. B: Condens. Matter 80, 205407 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    M. M. Shokrieh and R. Rafiee, Mater. Des. 31, 790 (2010).CrossRefGoogle Scholar
  6. 6.
    C. Li and T.-W. Chou, Int. J. Solid Struct. 40, 2487 (2003).zbMATHCrossRefGoogle Scholar
  7. 7.
    A. Sakhaee-Pour, Solid State Commun. 149, 91 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    K. Hashemnia, M. Farid, and R. Vatankhah, Comput. Mater. Sci. 47, 79 (2009).CrossRefGoogle Scholar
  9. 9.
    J.-L. Tsai and J.-F. Tu, Mater. Des. 31, 194 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Guo and W. Guo, J. Phys. D: Appl. Phys. 36, 805 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    H. Bu, Y. Chen, M. Zou, Y. Yi, and Z. Ni, Phys. Lett. A 373, 3359 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    G. Van Lier, C. van Alsenoy, V. van Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).CrossRefGoogle Scholar
  13. 13.
    Y. Gao and P. Hao, Physica E (Amsterdam) 41, 1561 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    M. Topsakal and S. Ciraci, Phys. Rev. B: Condens. Matter 81, 024107 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    C. A. Marianetti and H. G. Yevick, arXiv:1004.1849v1 [cond-mat.mtrl-sci].Google Scholar
  16. 16.
    A. Tobolski and H. Eyring, J. Chem. Phys. 11, 125 (1943).ADSCrossRefGoogle Scholar
  17. 17.
    M. J. S. Dewar, Fortschr. Chem. Forsch. 23, 1 (1971).CrossRefGoogle Scholar
  18. 18.
    E. A. Nikitina, V. D. Khavryutchenko, E. F. Sheka, H. Barthel, and J. Weis, J. Phys. Chem. A 103, 11355 (1999).CrossRefGoogle Scholar
  19. 19.
    V. Khavryutchenko, E. Nikitina, A. Malkin, and E. Sheka, Phys. Low-Dimens. Struct. 6, 65 (1995).Google Scholar
  20. 20.
    V. D. Khavryutchenko and A. V. Khavryutchenko, Jr., DYQUAMECH-Dynamical-Quantum Modelling in Mechanochemistry Software for Personal Computers (Institute of Surface Chemistry, National Academy of Science of Ukraine, Kiev, 1993).Google Scholar
  21. 21.
    V. A. Zayets, CLUSTER-Z1: Quantum-Chemical Software for Calculations in the s,p-Basis (Institute of Surface Chemistry, National Academy of Science of Ukraine, Kiev, 1990).Google Scholar
  22. 22.
    E. F. Sheka and L. A. Chernozatonskii, Int. J. Quantum Chem. 110, 1466 (2010).Google Scholar
  23. 23.
    E. F. Sheka and L. A. Chernozatonskii, Zh. Eksp. Teor. Fiz. 137(1), 136 (2010) [JETP 110 (1), 121 (2010)].Google Scholar
  24. 24.
    P. Pulay, Theor. Chim. Acta 50, 299 (1979).CrossRefGoogle Scholar
  25. 25.
    E. F. Sheka, Int. J. Quantum Chem. 107, 2803 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    L. Kh. Sibgatullina, N. A. Popova, E. A. Nikitina, and E. F. Sheka, in Proceedings of the Second All-Russian Conference on Multiscale Modeling of Nanotechnological Processes and Structures, Moscow, Russia, 2009 (Moscow, 2009), p. 379.Google Scholar
  27. 27.
    N. A. Popova, L. Kh. Sibgatullina, E. F. Sheka, and E. A. Nikitina, in Proceedings of the International Forum on Nanotechnology (Rusnanotech 09), Section “Mathematical Simulation in Nanotechnology,” Moscow, Russia, October 6–8, 2009 (Moscow, 2009), p. 214.Google Scholar
  28. 28.
    L. Kh. Nurullina, V. A. Popova, E. A. Nikitina, and E. F. Sheka, in Proceedings of the Second All-Russian Conference on Multiscale Modeling of Nanotechnological Processes and Structures, Moscow, Russia, 2009 (Moscow, 2009), p. 306.Google Scholar
  29. 29.
    E. F. Sheka, V. A. Popova, N. A. Popova, L. Kh. Nurullina, and E. A. Nikitina, Proceedings of the International Forum on Nanotechnology (Rusnanotech 09), Section “Mathematical Simulation in Nanotechnology,” Moscow, Russia, October 6–8, 2009 (Moscow, 2009), p. 341.Google Scholar
  30. 30.
    A. Chuvilin, J. C. Meyer, G. Algara-Siller, and U. Kaiser, New J. Phys. 11, 083019 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    C. Jin, H. Lan, L. Pen, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington) 321, 385 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. F. Sheka
    • 1
    Email author
  • N. A. Popova
    • 1
  • V. A. Popova
    • 1
  • E. A. Nikitina
    • 1
    • 2
  • L. H. Shaymardanova
    • 1
  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations