Phase transformations and magnetotransport properties of the Pr0.5Sr0.5Co1 − xMnxO3 system

  • I. O. Troyanchuk
  • A. N. Chobot
  • N. V. Tereshko
  • D. V. Karpinskii
  • V. Efimov
  • V. Sikolenko
  • P. Henry
Order, Disorder, and Phase Transition in Condensed System

Abstract

The structural, magnetic, and magnetotransport properties of Pr0.5Sr0.5Co1 − xMnxO3 (x < 0.65) perovskites are studied by magnetization and electrical conductivity measurements in magnetic fields up to 14 T and by neutron diffraction. In the manganese concentration range x < 0.5 and T = 300 K, the crystal structure is described by monoclinic space group I2/a; at x > 0.5, it is described by orthorhombic space group Imma. When the temperature decreases, a structural transformation without changing the symmetry takes place in all compounds. This transformation is caused by an active role of the inner shells of the praseodymium ion in chemical bond formation. The substitution of manganese for cobalt breaks a long-range ferromagnetic order near x ≈ 0.25, and a metal-dielectric transition occurs at x ≈ 0.15. The negative magnetoresistance is found to be maximal near a critical manganese concentration, where a long-range magnetic order is broken; it reaches 95% in a field of 14 T at T = 10 K for x = 0.2. An unusual dielectric magnetic state with a small spontaneous magnetic moment and a sharp transition into a paramagnetic state at T > 200 K is revealed in the concentration range 0.30 ≤ x ≤ 0.65 in spite of the absence of coherent magnetic neutron scattering. A model is proposed to explain the behavior of the magnetic properties in this phase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958).ADSCrossRefGoogle Scholar
  2. 2.
    P. Ganguly, P. S. Kurmar, P. N. Santhosh, and I. S. Mulla, J. Phys.: Condens. Matter 6, 533 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    P. M. Raccah and J. B. Goodenough, Phys. Rev. 155, 932 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Senaris-Rodriguez and J. B. Goodenough, J. Solid State Chem. 118, 323 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    J. Wu and C. Leighton, Phys. Rev. B: Condens. Matter 67, 174408 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    A. Ghoshray, B. Bandyopadhyay, K. Ghoshray, V. Morchshakov, K. Bärner, I. O. Troyanchuk, H. Nakamura, T. Kohara, G. Y. Liu, and G. H. Rao, Phys. Rev. B: Condens. Matter 69, 064424 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    J. Q. Yan, J. S. Zhou, and J. B. Goodenough, Phys. Rev. B: Condens. Matter 70, 014402 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    A. Maignan, C. Martin, M. Hervieu, and B. Raveau, J. Magn. Magn. Mater. 211, 173 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    P. L. Kuhns, M. J. R. Hoch, W. G. Moulton, A. P. Reyes, J. Wu, and C. Leighton, Phys. Rev. Lett. 91, 127202 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    J. Wu, J. W. Lynn, and C. J. Glinka, Phys. Rev. Lett. 94, 037201 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A. Mineshige, M. Inaba, T. Yao, Z. Ogumi, K. Kikuchi, and M. Kawase, J. Solid State Chem. 121, 423 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    M. Abbate, G. Zampieri, J. Okamoto, A. Fujimori, S. Kawasaki, and M. Takano, Phys. Rev. B: Condens. Matter 65, 165120 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    I. O. Troyanchuk, L. S. Lobanovsky, N. V. Kasper, M. Hervieu, A. Maignan, C. Michel, H. Szymczak, and A. Szewczyk, Phys. Rev. B: Condens. Matter 58(22), 14903 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    Sheng Ju, K. W. Yu, and Z. Y. Li, Phys. Rev. B: Condens. Matter 71, 014 416 (2005).Google Scholar
  15. 15.
    K. Yoshii and H. Abe, Phys. Rev. B: Condens. Matter 67, 094408 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    R. Mahendiran and P. Schifer, Phys. Rev. B: Condens. Matter 68, 024427 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    M. Uchida, R. Mahendiran, Y. Tomioka, Y. Matsui, K. Ishizuka, and Y. Tokura, Appl. Phys. Lett. 86, 131913 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    I. O. Troyanchuk, D. V. Karpinskii, A. N. Chobot, D. G. Voitsekhovich, and V. M. Dobryanskii, Pis’ma Zh. Eksp. Teor. Fiz. 84(3), 180 (2006) [JETP Lett. 84 (3), 151 (2006)].Google Scholar
  19. 19.
    S. Hirahara, Y. Nakai, K. Miyoshi, K. Fujiwara, and J. Takeuchi, J. Magn. Magn. Mater. 310, 1866 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    I. O. Troyanchuk, M. V. Bushinskii, D. V. Karpinsky, V. M. Dobryanskii, V. V. Sikolenko, and A. M. Balagurov, Pis’ma Zh. Eksp. Teor. Fiz. 89(7), 375 (2009) [JETP Lett. 89 (7), 319 (2009)].Google Scholar
  21. 21.
    C. Leighton, D. D. Stauffer, Q. Huang, Y. Ren, S. El-Khatib, M. A. Torija, J. Wu, J. W. Lynn, L. Wang, N.A. Frey, H. Srikanth, J. E. Davies, K. Liu, and J. F. Mitchell, Phys. Rev. B: Condens. Matter 79, 214420 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    S. Tsubouchi, T. Kyomen, M. Itoh, P. Ganguly, M. Oguni, Y. Shimojo, Y. Morii, and Y. Ishii, Phys. Rev. B: Condens. Matter 66, 052418 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    S. Tsubouchi, T. Kyomen, M. Itoh, and M. Oguni, Phys. Rev. B: Condens. Matter 69, 144406 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    T. Fujita, T. Miyashita, Y. Yasui, Y. Kobayashi, M. Sato, E. Nishibori, M. Sakata, Y. Shimojo, N. Igawa, Y. Ishii, K. Kakurai, T. Adachi, Y. Ohishi, and M. Takata, J. Phys. Soc. Jpn. 73, 1987 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    T. Fujita, S. Kawabata, M. Sato, N. Kurita, M. Hedo, and Y. Uwatoko, J. Phys. Soc. Jpn. 74, 2294 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    T. Naito, H. Sasaki, and H. Fujishiro, J. Phys. Soc. Jpn. 79, 034710 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    K. Kni ek, J. Hejtmánek, P. Novák, and Z. Jirák, Phys. Rev. B: Condens. Matter 81, 155113 (2010).CrossRefGoogle Scholar
  28. 28.
    A. J. Barón-González, C. Frontera, J. L. García-Muñoz, J. Blasco, and C. Ritter, Phys. Rev. B: Condens. Matter 81, 054427 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    A. N. Vasiliev, O. S. Volkova, L. S. Lobanovskii, I. O. Troyanchuk, Z. Hu, L. H. Tjeng, D. I. Khomskii, H.-J. Lin, C. T. Chen, N. Tristan, F. Kretzschmar, R. Klingeler, and B. Büchner, Phys. Rev. B: Condens. Matter 77, 104442 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    H. Kubo, K. Zenmyo, M. Itoh, N. Nakayama, T. Mizota, and Y. Ueda, J. Magn. Magn. Mater. 272–276, 581 (2001).Google Scholar
  31. 31.
    D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, and H. V. Löhneysen, Phys. Rev. B: Condens. Matter 75, 144402 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    L. Jin, Zh. He, and D. Damjanovic, Appl. Phys. Lett. 95, 012905 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. O. Troyanchuk
    • 1
  • A. N. Chobot
    • 1
  • N. V. Tereshko
    • 1
  • D. V. Karpinskii
    • 1
  • V. Efimov
    • 2
  • V. Sikolenko
    • 3
  • P. Henry
    • 4
  1. 1.Scientific and Practical Materials Research CentreNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  3. 3.Paul Scherrer InstituteVilligen PSISwitzerland
  4. 4.Helmholtz Center BerlinBerlinGermany

Personalised recommendations