Optical defect modes in chiral liquid crystals

  • V. A. BelyakovEmail author
  • S. V. Semenov
Statistical, Nonlinear, and Soft Matter Physics


An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.


Circular Polarization Defect Mode Stop Band Lasing Threshold Edge Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 6852 (1999).CrossRefGoogle Scholar
  2. 2.
    V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    P. V. Shibaev, V. I. Kopp, and A. Z. Genack, J. Phys. Chem. B 107, 6961 (2003).CrossRefGoogle Scholar
  5. 5.
    E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    H. Hoshi, K. Ishikava, and H. Takezoe, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 020701(R) (2003).CrossRefGoogle Scholar
  8. 8.
    A. V. Shabanov, S. Ya. Vetrov, and A. Yu. Karneev, Pis’ma Zh. Eksp. Teor. Fiz. 80(3), 206 (2004) [JETP Lett. 80 (3), 181 (2004)].Google Scholar
  9. 9.
    I. J. Hodkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    F. Wang and A. Lakhtakia, Opt. Express 13, 7319 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, Adv. Mater. (Weinheim) 18, 193 (2006).CrossRefGoogle Scholar
  12. 12.
    H. Yoshida, C. H. Lee, A. Fuji, and M. Ozaki, Appl. Phys. Lett. 89, 231913 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    H. Yoshida, R. Ozaki, K. Yoshino, and M. Ozaki, Thin Solid Films 509, 197 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    A. H. Gevorgyan and M. Z. Haratyunyan, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 76, 031 701 (2007).CrossRefGoogle Scholar
  15. 15.
    M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, Phys. Rev. B: Condens. Matter 70, 033103 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    J. Schmidtke and W. Stille, Eur. Phys. J. 90, 353 (2003).Google Scholar
  17. 17.
    H. de Vries, Acta Crystallogr. 4, 219 (1951).CrossRefGoogle Scholar
  18. 18.
    E. I. Kats, Zh. Eksp. Teor. Fiz. 59, 1854 (1970) [Sov. Phys. JETP 32, 1004 (1970)].Google Scholar
  19. 19.
    P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).Google Scholar
  20. 20.
    V. A. Belyakov and V. E. Dmitrienko, Sov. Sci. Rev., Sect. A 13, 54 (1989).Google Scholar
  21. 21.
    V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer, New York, 1992), Chap. 4.CrossRefGoogle Scholar
  22. 22.
    V. A. Belyakov and S. V. Semenov, Zh. Eksp. Teor. Fiz. 136(4), 797 (2009) [JETP 109 (4), 687 (2009)]; Mol. Cryst. Liq. Cryst. 507, 209 (2009).Google Scholar
  23. 23.
    V. A. Belyakov, A. A. Gevorgian, O. S. Eritsian, and N. V. Shipov, Zh. Tekh. Fiz. 57(7), 1418 (1987) [Sov. Phys. Tech. Phys. 32 (7), 843 (1987)]; Kristallografiya 33 (3), 574 (1988) [Sov. Phys. Crystallogr. 33 (3), 337 (1988)].Google Scholar
  24. 24.
    V. A. Belyakov, Mol. Cryst. Liq. Cryst. 453, 43 (2006); Ferroelectrics 344, 163 (2006).CrossRefGoogle Scholar
  25. 25.
    K.-C. Shin, H. Hoshi, D.-H. Chung, K. Ishikawa, and H. Takezoe, Opt. Lett. 27, 128 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, Appl. Phys. Lett. 90, 091114 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    V. A. Belyakov, Mol. Cryst. Liq. Cryst. 494, 127 (2008).CrossRefGoogle Scholar
  28. 28.
    V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Prog. Quantum Electron. 27, 369 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Russian Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations