Journal of Experimental and Theoretical Physics

, Volume 112, Issue 1, pp 102–107 | Cite as

Graphene-based modulation-doped superlattice structures

  • D. BolmatovEmail author
  • Chung-Yu Mou
Solids and Liquids


The electronic transport properties of graphene-based superlattice structures are investigated. A graphene-based modulation-doped superlattice structure geometry is proposed consisting of periodically arranged alternate layers: InAs/graphene/GaAs/graphene/GaSb. The undoped graphene/GaAs/graphene structure displays a relatively high conductance and enhanced mobilities at increased temperatures unlike the modulation-doped superlattice structure, which is more steady and less sensitive to temperature and the robust electrical tunable control on the screening length scale. The thermionic current density exhibits enhanced behavior due to the presence of metallic (graphene) monolayers in the superlattice structure. The proposed superlattice structure might be of great use for new types of wide-band energy gap quantum devices.


GaAs GaSb Graphene Monolayer Boltzmann Transport Equation Superlattice Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    C. Hummel, F. Schwierz, A. Hanisch, and J. Pezoldt, Phys. Status Solidi B 247, 903 (2010).Google Scholar
  4. 4.
    B. L. Huang and C. Y. Mou, EPL 88, 68 005 (2009).CrossRefGoogle Scholar
  5. 5.
    L. A. Falkovsky, Phys. Rev. B: Condens. Matter 80, 113 413 (2009); L. A. Falkovsky, Zh. Eksp. Teor. Fiz. 137 (2), 361 (2010) [JETP 110 (2), 319 (2010)].CrossRefGoogle Scholar
  6. 6.
    M. Topsakal, H. Sevincli, and S. Ciraci, Appl. Phys. Lett. 92, 173118 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    H. Sevincli, M. Topsakal, E. Durgun, and S. Ciraci, Phys. Rev. B: Condens. Matter 77, 195 434 (2008).CrossRefGoogle Scholar
  8. 8.
    P. Y. Chang and H. H. Lin, Appl. Phys. Lett. 95, 082104 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    M. K. Li, S. J. Lee, and T. W. Kang, Curr. Appl. Phys. 9, 769 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    M. Titov, P. M. Ostrovsky, and I. V. Gornyi, Semicond. Sci. Technol. 25, 034007 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    M. Titov and C. W. J. Beenakker, Phys. Rev. B: Condens. Matter 74, 041401(R) (2006).ADSCrossRefGoogle Scholar
  12. 12.
    D. Bolmatov and C.-Y. Mou, Zh. Eksp. Teor. Fiz. 137(4), 695 (2010) [JETP 110 (4), 613 (2010)]; D. Bolmatov and C. Y. Mou, Physica B (Amsterdam) 405, 2896 (2010); T. Dobrowolski, Can. J. Phys. 88, 627 (2010).Google Scholar
  13. 13.
    D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Science (Washington) 324, 5929 (2009).Google Scholar
  14. 14.
    Yu. E. Lozovik, S. P. Merkulova, and I. V. Ovchinnikov, Phys. Lett. A 282, 407 (2001); Yu. E. Lozovik and A. A. Sokolik, Phys. Lett. A 374, 326 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    M. Litinskaya and V. M. Agranovich, J. Phys.: Condens. Matter 21, 415301 (2009).Google Scholar
  16. 16.
    J. Pomplun, S. Burger, F. Schmidt, A. Schliwa, D. Bimberg, A. Pietrzak, H. Wenzel, and G. Erbert, Phys. Status Solidi B 247, 846 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science (Washington) 283, 1897 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    M. Esmailpour, A. Esmailpour, R. Asgari, M. Elahi, and M. R. R. Tabar, Solid State Commun. 150, 655 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    M. Mucha-Kruczynski, E. McCann, and V. I. Fal’ko, Semicond. Sci. Technol. 25, 033 001 (2010).CrossRefGoogle Scholar
  20. 20.
    X. Wang, Y. Ezzahri, J. Christofferson, and A. Shakouri, J. Phys. D: Appl. Phys. 42, 075 101 (2009).CrossRefGoogle Scholar
  21. 21.
    S. Das Sarma and D. W. Wang, Phys. Rev. Lett. 83, 816 (1999); D. W. Wang, A. J. Millis, and S. Das Sarma, Phys. Rev. Lett. 85, 4570 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    C. H. Shih, and C. C. Lin, Semicond. Sci. Technol. 25, 065 003 (2010).CrossRefGoogle Scholar
  23. 23.
    L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and M. Hong, J. Crystal Growth 311, 2195 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    K. Trachenko and M. T. Dove, arXiv:0805.1392v1.Google Scholar
  25. 25.
    P. Cisell, R. Zhang, Z. Wang, C. T. Reynolds, M. Baxendale, and T. Peijs, Eur. Polymer J. 45, 2741 (2009).CrossRefGoogle Scholar
  26. 26.
    H. Sevinli, M. Topsakal, and S. Ciraci, Phys. Rev. B: Condens. Matter 78, 245 402 (2008).CrossRefGoogle Scholar
  27. 27.
    N. Abedpour, A. Esmailpour, R. Asgari, and M. R. R. Tabar, Phys. Rev. B: Condens. Matter 79, 165412 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    L. A. Chernozatonskii and P. B. Sorokin, Phys. Status Solidi B 245, 2086 (2008); L. A. Chernozatonskii and P. B. Sorokin, J. Phys. Chem. C 114 (7), 3225 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    Yu-Xian Li, J. Phys.: Condens. Matter 22, 015302 (2010).ADSGoogle Scholar
  30. 30.
    Z. P. Niu, F. X. Li, B. G. Wang, L. Sheng, and D. Y. Xing, Eur. Phys. J. B 66, 245 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    T. Ouyang, Y. P. Chen, K. K. Yang, and J. X. Zhong, EPL 88, 28002 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    A. K. M. Newaz, Y. Wang, J. Wu, S. A. Solin, V. R. Kavasseri, I. S. Ahmad, and I. Adesida, Phys. Rev. B: Condens. Matter 79, 195308 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    S. Saito and A. Zettl, Carbon Nanotubes: Quantum Cylinders of Graphene (Elsevier, Oxford, 2008).Google Scholar
  34. 34.
    B. Borca, S. Barja, M. Garnica, J. J. Hinarejos, A. L. V. Parga, R. Miranda, and F. Guinea, Semicond. Sci. Technol. 25, 034001 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    A. Nduwimana and Xiao-Qian Wang, Nano Lett. 9(1), 283 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, Phys. Rev. B: Condens. Matter 79, 075123 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of PhysicsNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.National Center for Theoretical SciencesHsinchuTaiwan
  3. 3.Department of PhysicsQueen Mary University of LondonLondonUK

Personalised recommendations