Advertisement

Journal of Experimental and Theoretical Physics

, Volume 111, Issue 4, pp 627–634 | Cite as

Nuclear 111Cd probes detect a hidden symmetry change at the γ → α transition in cerium considered isostructural for 60 years

  • A. V. Tsvyashchenko
  • A. V. Nikolaev
  • A. I. Velichkov
  • A. V. Salamatin
  • L. N. Fomicheva
  • G. K. Ryasny
  • A. A. Sorokin
  • O. I. Kochetov
  • M. Budzynski
Order, Disorder, and Phase Transition in Condensed System

Abstract

We use the time-differential perturbed angular correlation technique to study nuclear electric quadupole hyperfine interactions of probe 111Cd nuclei in cerium lattice sites at room temperature under pressures up to 8 GPa. We have found that the well known γ → α phase transition in cerium is not isostructural. In α-Ce, the probe 111Cd nuclei reveal a quadrupole electron charge density component that is absent in γ-Ce. The hidden spacial structure of electronic quadrupoles in α-Ce is triple-q antiferroquadrupolar, as was suggested in [14]. We relate our findings to the current understanding of the γ → α phase transition and also report on nuclear quadrupole interactions in other high-pressure phases of cerium: α″ (C2/m space symmetry) and α′ (α-U structure).

Keywords

Cerium Nuclear Quadrupole Interaction Time Differential Perturb Angular Correlation Silver Foil 111Cd Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Koskenmaki and K. A. Gschneidner, Jr., in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1978), Chap. 4, p. 337.Google Scholar
  2. 2.
    P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 55 (1948).Google Scholar
  3. 3.
    A. W. Lawson and T.-Y. Tang, Phys. Rev. 76, 301 (1949).CrossRefADSGoogle Scholar
  4. 4.
    A. F. Schuch and J. H. Sturdivant, J. Chem. Phys. 18, 145 (1950).CrossRefADSGoogle Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1995; Butterworth-Heinemann, Oxford, 1996).Google Scholar
  6. 6.
    D. R. Gustafson, J. D. McNutt, and L. O. Roelling, Phys. Rev. Sect. B 183, 435 (1969); R. F. Gempel, D. R. Gustafson, and J. D. Willenberg, Phys. Rev. B: Solid State 5, 2082 (1972).ADSGoogle Scholar
  7. 7.
    U. Kornstädt, R. Lässer, and B. Lengeler, Phys. Rev. B: Condens. Matter 21, 1898 (1980).ADSGoogle Scholar
  8. 8.
    B. Johansson, Philos. Mag. 30, 469 (1974).CrossRefADSGoogle Scholar
  9. 9.
    J. W. Allen and R. M. Martin, Phys. Rev. Lett. 49, 1106 (1982).CrossRefADSGoogle Scholar
  10. 10.
    M. Lavagna, C. Lacroix, and M. Cyrot, Phys. Lett. A 90, 210 (1982).CrossRefADSGoogle Scholar
  11. 11.
    M. J. Lipp, D. Jackson, H. Cynn, C. Aracne, W. J. Evans, and A. K. McMahan, Phys. Rev. Lett. 101, 165703 (2008).CrossRefADSGoogle Scholar
  12. 12.
    B. Johansson, A. V. Ruban, and I. A. Abrikosov, Phys. Rev. Lett. 102, 189601 (2009).CrossRefADSGoogle Scholar
  13. 13.
    G. Eliashberg and H. Capellmann, Pis’ma Zh. Éksp. Teor. Fiz. 67(2), 111 (1998) [JETP Lett. 67 (2), 125 (1998)].Google Scholar
  14. 14.
    A. V. Nikolaev and K. H. Michel, Eur. Phys. J. B 9, 619 (1999).CrossRefADSGoogle Scholar
  15. 15.
    A. V. Nikolaev and K. H. Michel, Eur. Phys. J. B 17, 15 (2000).CrossRefADSGoogle Scholar
  16. 16.
    A. V. Nikolaev and K. H. Michel, Phys. Rev. B: Condens. Matter 66, 054103 (2002).ADSGoogle Scholar
  17. 17.
    H. T. Stokes and D. M. Hatch, Isotropy Subgroups of the 230 Crystallographic Space Groups (World Scientific, Singapore, 1988).MATHGoogle Scholar
  18. 18.
    O. V. Kovalev, Irreducible Representations of the Space Groups (Gordon and Breach, New York, 1965).Google Scholar
  19. 19.
    C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon, Oxford, 1972).MATHGoogle Scholar
  20. 20.
    M. I. McMahon and R. J. Nelmes, Phys. Rev. Lett. 78, 3884 (1997).CrossRefADSGoogle Scholar
  21. 21.
    W. I. F. David, R. M. Ibberson, T. J. S. Dennis, J. P. Hare, and K. Prassides, Europhys. Lett. 18, 219 (1992); P. A. Heiney, G. B. M. Vaughan, J. E. Fischer, N. Coustel, D. E. Cox, J. R. D. Copley, D. A. Neumann, W. A. Kamitakahara, K. M. Creegan, D. M. Cox, J. P. McCauley, Jr., and A. B. Smith III, Phys. Rev. B: Condens. Matter 45, 4544 (1992).CrossRefADSGoogle Scholar
  22. 22.
    T. A. Scott, Phys. Rep. 27, 89 (1976).CrossRefADSGoogle Scholar
  23. 23.
    J. A. Paixão, C. Detlefs, M. J. Longfield, R. Caciuffo, P. Santini, N. Bernhoeft, J. Rebizant, and G. H. Lander, Phys. Rev. Lett. 89, 187202 (2002).CrossRefADSGoogle Scholar
  24. 24.
    D. Malterre, M. Grioni, and Y. Baer, Adv. Phys. 45, 299 (1996).CrossRefADSGoogle Scholar
  25. 25.
    P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and G. H. Lander, Rev. Mod. Phys. 81, 807 (2009).CrossRefADSGoogle Scholar
  26. 26.
    A. V. Nikolaev and K. H. Michel, Phys. Rev. B: Condens. Matter 68, 054112 (2003).ADSGoogle Scholar
  27. 27.
    R. M. Steffen and H. Frauenfelder, in Perturbed Angular Correlations, Ed. by E. Karlsson, E. Matthias, and K. Siegbahn (North-Holland, Amsterdam, The Netherlands, 1964).Google Scholar
  28. 28.
    E. N. Kaufmann and R. J. Vianden, Rev. Mod. Phys. 51, 161 (1979).CrossRefADSGoogle Scholar
  29. 29.
    A. V. Tsvyashenko, L. N. Fomicheva, A. A. Sorokin, G. K. Ryasny, B. A. Komissarova, L. G. Shpinkova, K. V. Klementiev, A. V. Kuznetsov, A. P. Menushenkov, V. N. Trofimov, A. E. Primenko, and R. Cortes, Phys. Rev. B: Condens. Matter 65, 174 513 (2002).Google Scholar
  30. 30.
    V. B. Brudanin, D. V. Flossofov, O. I. Kochetov, N. A. Korolev, M. Milanov, I. V. Ostrovskiy, V. N. Pavlov, A. V. Salamatin, V. V. Timkin, A. I. Velichkov, L. N. Fomicheva, A. V. Tsvyaschenko, and Z. Z. Akselrod, Nucl. Instrum. Methods Phys. Res., Sect. A 547, 389 (2005).CrossRefADSGoogle Scholar
  31. 31.
    A. V. Tsvyashenko, L. N. Fomicheva, V. B. Brudanin, O. I. Kochetov, A. V. Salamatin, A. Velichkov, M. Wiertel, M. Budzynski, A. A. Sorokin, G. K. Ryasniy, B. A. Komissarova, and M. Milanov, Phys. Rev. B: Condens. Matter 76, 045 112 (2007).Google Scholar
  32. 32.
    M. Forker, Hyperfine Interact. 24/26, 907 (1985).CrossRefADSGoogle Scholar
  33. 33.
    R. J. Vianden, Hyperfine Interact. 15/16, 189 (1987).ADSGoogle Scholar
  34. 34.
    M. Forker, L. Freise, and D. Simon, J. Phys. F: Met. Phys. 18, 823 (1988).CrossRefADSGoogle Scholar
  35. 35.
    A. P. Murani, Z. A. Bowden, A. D. Taylor, R. Osborn, and W. G. Marshall, Phys. Rev. B: Condens. Matter 48, 13981 (1993).ADSGoogle Scholar
  36. 36.
    U. Hütten, R. Vianden, and E. N. Kaufmann, Hyperfine Interact. 34, 213 (1987).CrossRefADSGoogle Scholar
  37. 37.
    J. L. Sarrao, Physica B (Amsterdam) 259–261, 128 (1999).Google Scholar
  38. 38.
    A. V. Nikolaev and K. H. Michel, Zh. Éksp. Teor. Fiz. 136(2), 338 (2009) [JETP 109 (2), 286 (2009)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Tsvyashchenko
    • 1
    • 2
  • A. V. Nikolaev
    • 2
    • 5
  • A. I. Velichkov
    • 3
  • A. V. Salamatin
    • 3
  • L. N. Fomicheva
    • 1
  • G. K. Ryasny
    • 2
  • A. A. Sorokin
    • 2
  • O. I. Kochetov
    • 3
  • M. Budzynski
    • 4
  1. 1.Vereshchagin Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow RegionRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  4. 4.Institute of PhysicsCurie-Sklodowska UniversityLublinPoland
  5. 5.Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations