Advertisement

Journal of Experimental and Theoretical Physics

, Volume 111, Issue 4, pp 576–581 | Cite as

Black holes in models with noncompact extra dimensions

  • S. O. Alexeyev
  • D. A. Starodubtseva
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We have investigated the equations of geodesics for the black hole solution suggested in [1] in the Randall-Sundrum model with one brane. Being a generalization of the Schwarzschild metric, this solution has a structure like the Reissner-Nordström one, with the “tidal charge” replacing the electric charge. Following our investigation of the behavior of geodesics, we have shown that this solution is consistent with observational data, without predicting the appearance of any fundamentally new effects. A more accurate constraint on the tidal charge is obtained by analyzing circular orbits.

Keywords

Black Hole Extra Dimension Gravi Tational Potential Circular Orbit Black Hole Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Dadhich, R. Maartens, P. Papadopoulos, and V. Rezania, Phys. Lett. B 487, 1 (2000).zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    S. O. Alexeyev, M. V. Sazhin, and O. S. Khovanskaya, Pis’ma Astron. Zh. 28(3), 163 (2002) [Astron. Lett. 28 (3), 139 (2002)].Google Scholar
  3. 3.
    S. Mignemi and N. Stewart, Phys. Rev. 47, 5259 (1993).MathSciNetADSGoogle Scholar
  4. 4.
    M. Cadoni and S. Mignemi, Nucl. Phys. B 427, 669 (1994).zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998).CrossRefADSGoogle Scholar
  6. 6.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    V. A. Rubakov, Usp. Fiz. Nauk 171(9), 913 (2001) [Phys.—Usp. 44 (9), 871 (2001)].CrossRefGoogle Scholar
  8. 8.
    A. Chamblin, S. W. Hawking, and H. S. Reall, Phys. Rev. D: Part. Fields 61, 065007 (2000).MathSciNetADSGoogle Scholar
  9. 9.
    S. B. Giddins, E. Katz, and L. Randall, J. High Energy Phys. (online) 0003, 023 (2000).CrossRefADSGoogle Scholar
  10. 10.
    De-Chang Dai and D. Stojkovic, http://arxiv.org//abs/1004.3291.
  11. 11.
    T. Tanaka, Prog. Theor. Phys. Suppl. 148, 307 (2003).CrossRefADSGoogle Scholar
  12. 12.
    R. Emparan, A. Fabbri, and N. Kaloper, J. High Energy Phys. (online) 0208, 043 (2002).CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983; Mir, Moscow, 1986), Vol. 1.zbMATHGoogle Scholar
  14. 14.
    A. M. Cherepashchuk, Usp. Fiz. Nauk 173(4), 345 (2003) [Phys.—Usp. 46 (4), 335 (2003)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscowRussia
  2. 2.Ural State UniversityYekaterinburgRussia

Personalised recommendations