Journal of Experimental and Theoretical Physics

, Volume 111, Issue 3, pp 375–383 | Cite as

Free-field representations and geometry of some Gepner models

  • S. E. Parkhomenko
Nuclei, Particles, Fields, Gravitation, and Astrophysics


The geometry of the k K Gepner model, where k + 2 = 2K, is investigated by a free-field representation known as the “bcβγ” system. Using this representation, we directly show that the internal sector of the model is given by Landau-Ginzburg ℂ K /ℤ2K orbifold. Then we consider the deformation of the orbifold by a marginal antichiral-chiral operator. Analyzing the chiral de Rham complex structure in the holomorphic sector, we show that it coincides with chiral de Rham complex of some toric manifold, where toric data are given by certain fermionic screening currents. This allows relating the Gepner model deformed by the marginal operator to a σ-model on the CY manifold realized as a double cover of ℙK − 1 with ramification along a certain submanifold.


Minimal Model Double Cover Free Field Vertex Operator Algebra Twisted Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Gepner, Phys. Lett. B 199, 380 (1987); Nucl. Phys. B 296, 757 (1988).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    B. Greene, arXiv:hep-th/9702155.Google Scholar
  3. 3.
    L. A. Borisov, arXiv:math.AG/9809094.Google Scholar
  4. 4.
    F. Malikov, V. Schechtman, and A. Vaintrob, arXiv:alg-geom/9803041.Google Scholar
  5. 5.
    V. Gorbounov and F. Malikov, arXiv:math.AG/0308114.Google Scholar
  6. 6.
    T. Kawai, Y. Yamada, and S. K. Yang, arXiv:hep-th/9306096.Google Scholar
  7. 7.
    B. L. Feigin and A. M. Semikhatov, arXiv:hep-th/9810059.Google Scholar
  8. 8.
    S. E. Parkhomenko, J. Phys. A: Math. Gen. 42, 304 023 (2009).CrossRefMathSciNetGoogle Scholar
  9. 9.
    B. L. Feigin, A. M. Semikhatov, V. A. Sirota, and I. Yu. Tipunin, arXiv:hep-th/9805179.Google Scholar
  10. 10.
    A. Schwimmer and N. Seiberg, Phys. Lett. B 184, 191 (1987).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    E. Frenkel and M. Szczesny, arXiv:math.AG/0307181.Google Scholar
  12. 12.
    W. Fulton, Introduction to Toric Varieties (AM-131) (Princeton University Press, Princeton, New Jersey, United States, 1993).Google Scholar
  13. 13.
    W. Lerche, C. Vafa, and N. P. Warner, Nucl. Phys. B 324, 427 (1989).CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    M. R. Douglas and S. Kachru, arXiv:hep-th/0610102v3.Google Scholar
  15. 15.
    M. Grana, arXiv:hep-th/0509003v3.Google Scholar
  16. 16.
    A. Sen, Nucl. Phys. B 475, 562 (1996).zbMATHCrossRefADSGoogle Scholar
  17. 17.
    A. Sen, Phys. Rev. D: Part. Fields 55, 7345 (1997).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations