Advertisement

Journal of Experimental and Theoretical Physics

, Volume 111, Issue 2, pp 215–219 | Cite as

Coexistence of superfluid and solid helium in aerogel

  • I. V. Kalinin
  • E. I. Kats
  • M. Koza
  • V. V. Lauter
  • H. Lauter
  • A. V. Puchkov
Order, Disorder, and Phase Transition in Condensed System

Abstract

The results of recent neutron scattering studies of solid helium in silica aerogel are discussed. Previously I.V. Kalinin et al., Pis’ma Zh. Éksp. Teor. Fiz. 87 (1), 743 (2008) [JETP Lett. 87 (1), 645 (2008)], we detected the existence of a superfluid phase in solid helium at a temperature below 0.6 K and a pressure of 51 bar, although, according to the phase diagram, helium should be in the solid state under these conditions. This work is a continuation of the above studies whose main goal was to examine the detected phenomenon and to establish basic parameters of the existence of a superfluid phase. We have determined the temperature of the superfluid transition from solid to superfluid helium, T C = 1.3 K, by analyzing experimental data. The superfluid phase excitation parameters (lifetime, intensity, and energy) have a temperature dependence similar to that of bulk helium. The superfluid phase coexists with the solid phase in the entire measured temperature range from T = 0.05 K to T C and is a nonequilibrium one and disappears at T C.

Keywords

Dispersion Curve Kalinin Helium Atom Silica Aerogel Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Kalinin, E. I. Kats, M. Koza, V. V. Lauter, Kh. Lauter, and A. V. Puchkov, Pis’ma Zh. Éksp. Teor. Fiz. 87(11), 743 (2008) [JETP Lett. 87 (11), 645 (2008)].Google Scholar
  2. 2.
    H. Palevsky, K. Otnes, and K. E. Larsson, Phys. Rev. 112, 11 (1958).CrossRefADSGoogle Scholar
  3. 3.
    L. D. Landau, J. Phys. (Moscow) 11, 91 (1947).Google Scholar
  4. 4.
    E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004).CrossRefADSGoogle Scholar
  5. 5.
    A. F. Andreev and I. M. Lifshitz, Zh. Éksp. Teor. Fiz. 56(6), 2057 (1969) [Sov. Phys. JETP 29 (6), 1107 (1969)].Google Scholar
  6. 6.
    H. Lauter, I. V. Bogoyavlenskii, A. V. Puchkov, H. Godfrin, A. Skomorokhov, J. Klier, and P. Leiderer, Appl. Phys. A: Mater. Sci. Process. 74(Suppl. 1), S1547 (2002).ADSGoogle Scholar
  7. 7.
    I. V. Kalinin, M. Koza, H. Lauter, V. V. Lauter-Pasyuk, and A. V. Puchkov, Kristallografiya 52(3), 505 (2007) [Crystallogr. Rep. 52 (3), 566 (2007)].Google Scholar
  8. 8.
  9. 9.
    M. R. Gibbs, K. H. Andersen, W. G. Stirling, and H. Schober, J. Phys.: Condens. Matter 11, 603 (1999).CrossRefADSGoogle Scholar
  10. 10.
    B. N. Esel’son, L. A. Pogorelov, and V. I. Sobolev, Ukr. Fiz. Zh. 19, 763 (1974).Google Scholar
  11. 11.
    J. H. Vignos and H. A. Fairbank, Phys. Rev. 147, 185 (1966).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. V. Kalinin
    • 1
  • E. I. Kats
    • 2
  • M. Koza
    • 2
  • V. V. Lauter
    • 3
  • H. Lauter
    • 2
  • A. V. Puchkov
    • 1
  1. 1.Institute for Physics and Power EngineeringKaluga oblast, ObninskRussia
  2. 2.Institut Laue-LangevinGrenoble Cedex 9France
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations