Peculiarity of interrelation between electronic and magnetic properties of HTSC cuprates associated with short-range antiferromagnetic order

  • S. G. OvchinnikovEmail author
  • M. M. Korshunov
  • L. P. Kozeeva
  • A. N. Lavrov
Electronic Properties of Solid


We report on the results of measurements of anisotropic resistivity of RBa2Cu3O6 + x (R = Tm, Lu) high-temperature superconducting single crystals in a wide range of doping levels, indicating a nontrivial effect of magnetic order on the electronic properties of cuprates. In particular, our results visually demonstrate the crossover from the state with moderate anisotropy of resistivity ρ c ab ∼ 30 to a strongly anisotropic state with ρ c ab ∼ 7 × 103 upon cooling as well as upon a decrease in the hole concentration in the CuO2 planes. It is also shown that anisotropy is sensitive to the magnetic state of CuO2 planes and attains its maximum value after the establishment of the long-range antiferromagnetic order. The results are discussed in the framework of the theory based on the t-t′-t″-J model of CuO2 layers taking into account strong electron correlations and short-range magnetic order. In this theory, anomalies of spin correlators and Fermi surface topology for a critical hole concentration of p* ≈ 0.24 are demonstrated. The concentration dependence of the charge carrier energy indicates partial suppression of energy due to the emergence of a pseudogap at p < p*. This theory explains both the experimentally observed sensitivity of anisotropy in conductivity to the establishment of the antiferromagnetic order and the absence of anomalies in the temperature dependence of resistivity ρ ab (T) in the vicinity of the Néel temperature.


Fermi Surface Doping Level Hole Concentration Spin Density Wave Antiferromagnetic Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974; Nauka, Moscow, 1979).Google Scholar
  2. 2.
    A. N. Lavrov and L. P. Kozeeva, Physica C (Amsterdam) 248, 365 (1995); A. N. Lavrov and L. P. Kozeeva, Neorg. Mater. 34 (11), 1003 (1998) [Inorg. Mater. 34 (11), 1177 (1998)].ADSGoogle Scholar
  3. 3.
    A. N. Lavrov, M. Yu. Kameneva, and L. P. Kozeeva, Phys. Rev. Lett. 81, 5636 (1998).CrossRefADSGoogle Scholar
  4. 4.
    Y. Ando, A. N. Lavrov, S. Komiya, K. Segawa, and X. F. Sun, Phys. Rev. Lett. 87, 017001 (2001).CrossRefADSGoogle Scholar
  5. 5.
    N. A. Kozlov and L. A. Maksimov, Zh. Éksp. Teor. Fiz. 48, 1184 (1965) [Sov. Phys. JETP 21, 790 (1965)].Google Scholar
  6. 6.
    Yu. V. Kopaev, Trudy Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 86, 3 (1975).Google Scholar
  7. 7.
    D. I. Khomskii, Fiz. Met. Metalloved. 29(1), 31 (1970) [Phys. Met. Metallogr. 29 (1), 31 (1970)].Google Scholar
  8. 8.
    E. V. Kuz’min and S. G. Ovchinnikov, Teor. Mat. Fiz. 31(3), 379 (1977) [Theor. Math. Phys. 31 (3), 523 (1977)].Google Scholar
  9. 9.
    N. M. Plakida and V. S. Oudovenko, Zh. Éksp. Teor. Fiz. 131(2), 259 (2007) [JETP 104 (2), 230 (2007)].Google Scholar
  10. 10.
    M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).CrossRefADSGoogle Scholar
  11. 11.
    S. G. Ovchinnikov and O. G. Petrakovskii, Fiz. Tverd. Tela (Leningrad) 29(6), 1866 (1987) [Sov. Phys. Solid State 29 (6), 1037 (1987)].Google Scholar
  12. 12.
    M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998).CrossRefADSGoogle Scholar
  13. 13.
    S. M. Hayden, G. Aeppli, H. Mook, D. Rytz, M. F. Hundley, and Z. Fisk, Phys. Rev. Lett. 66, 821 (1991).CrossRefADSGoogle Scholar
  14. 14.
    A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, A. M. Belemuk, and R. Hayn, Zh. Éksp. Teor. Fiz. 119(4), 777 (2001) [JETP 92 (4), 677 (2001)].Google Scholar
  15. 15.
    É. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Pis’ma Zh. Éksp. Teor. Fiz. 82(4), 217 (2005) [JETP Lett. 82 (4), 198 (2005)].Google Scholar
  16. 16.
    A. Damascelli, Z. Hussein, and Z. X. Shen, Rev. Mod. Phys. 75, 473 (2003).CrossRefADSGoogle Scholar
  17. 17.
    T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, Nature (London) 350, 596 (1991).CrossRefADSGoogle Scholar
  18. 18.
    S. Komiya, Y. Ando, X. F. Sun, and A. N. Lavrov, Phys. Rev. B: Condens. Matter 65, 214535 (2002).ADSGoogle Scholar
  19. 19.
    K. Segawa and Y. Ando, Phys. Rev. B: Condens. Matter 69, 104521 (2004).ADSGoogle Scholar
  20. 20.
    A. N. Lavrov, L. P. Kozeeva, M. R. Trunin, and V. N. Zverev, Phys. Rev. B: Condens. Matter 79, 214523 (2009).ADSGoogle Scholar
  21. 21.
    A. N. Lavrov, Y. Ando, K. Segawa, and J. Takeya, Phys. Rev. Lett. 83, 1419 (1999).CrossRefADSGoogle Scholar
  22. 22.
    M. M. Korshunov and S. G. Ovchinnikov, Eur. Phys. J. B 57, 271 (2007).CrossRefADSGoogle Scholar
  23. 23.
    V. V. Val’kov and D. M. Dzebisashvili, Zh. Éksp. Teor. Fiz. 127(3), 686 (2005) [JETP 100 (3), 608 (2005)].Google Scholar
  24. 24.
    S. G. Ovchinnikov, M. M. Korshunov, and E. I. Shneyder, Zh. Éksp. Teor. Fiz. 136(5), 898 (2009) [JETP 109 (5), 775 (2009)].Google Scholar
  25. 25.
    H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991); J. Phys. Soc. Jpn. 61, 989 (1992).CrossRefADSGoogle Scholar
  26. 26.
    A. F. Barabanov and V. M. Berezovskii, Zh. Éksp. Teor. Fiz. 106(4), 1156 (1994) [JETP 79 (4), 627 (1994)].Google Scholar
  27. 27.
    V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 75(8), 450 (2002) [JETP Lett. 75 (8), 378 (2002)].Google Scholar
  28. 28.
    K. J. von Szczepanski P. Horsch, W. Stephan, and M. Ziegler, Phys. Rev. B: Condens. Matter 41, 2017 (1990).ADSGoogle Scholar
  29. 29.
    M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001) [Phys.-Usp. 44 (5), 515 (2001)].CrossRefGoogle Scholar
  30. 30.
    N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature (London) 447, 565 (2007).CrossRefADSGoogle Scholar
  31. 31.
    E. A. Yelland, J. Singleton, C. H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J. R. Cooper, Phys. Rev. Lett. 100, 047003 (2008).CrossRefADSGoogle Scholar
  32. 32.
    A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey, Phys. Rev. Lett. 100, 047004 (2008).CrossRefADSGoogle Scholar
  33. 33.
    X. J. Zhou, T. Yoshida, A. Lanzara, P. V. Bogdanov, S. A. Kellar, K. M. Shen, W. L. Yang, F. Ronning, T. Sasagawa, T. Kakeshita, T. Noda, H. Eisaki, S. Uchida, C. T. Lin, F. Zhou, J. W. Xiong, W. X. Ti, Z. X. Zhao, A. Fujimori, Z. Hussain, and Z.-X. Shen, Nature (London) 423, 398 (2003).CrossRefADSGoogle Scholar
  34. 34.
    W. J. Padilla, Y. S. Lee, M. Dumm, G. Blumberg, S. Ono, K. Segawa, S. Komiya, Y. Ando, and D. N. Basov, Phys. Rev. B: Condens. Matter 72, 060511(R) (2005).ADSGoogle Scholar
  35. 35.
    A. G. Loeser, Z. X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Science (Washington) 273, 325 (1996).CrossRefADSGoogle Scholar
  36. 36.
    H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadovaki, and J. Giapintzakis, Nature (London) 382, 51 (1996).CrossRefADSGoogle Scholar
  37. 37.
    J. W. Loram, J. Luo, J. R. Cooper, W. Y. Liang, and J. L. Tallon, J. Phys. Chem. Solids 62, 59 (2001).CrossRefADSGoogle Scholar
  38. 38.
    T. Yoshida, X. J. Zhou, H. Yagi, D. H. Lu, K. Tanaka, A. Fujimori, Z. Hussain, Z.-X. Shen, T. Kakeshita, H. Eisaki, S. Uchida, K. Segawa, A. N. Lavrov, and Y. Ando, Physica B (Amsterdam) 351, 250 (2004).ADSGoogle Scholar
  39. 39.
    V. Gavrichkov, A. Borisov, and S. G. Ovchinnikov, Phys. Rev. B: Condens. Matter 64, 235124 (2001).ADSGoogle Scholar
  40. 40.
    R. Hlubina and T. M. Rice, Phys. Rev. B: Condens. Matter 51, 9253 (1995).ADSGoogle Scholar
  41. 41.
    B. P. Stojkovic and D. Pines, Phys. Rev. B: Condens. Matter 55, 8576 (1997).ADSGoogle Scholar
  42. 42.
    L. B. Ioffe and A. J. Millis, Phys. Rev. B: Condens. Matter 58, 11631 (1998).ADSGoogle Scholar
  43. 43.
    A. T. Zheleznyak, V. M. Yakovenko, and H. D. Drew, Phys. Rev. B: Condens. Matter 59, 207 (1999).ADSGoogle Scholar
  44. 44.
    A. Perali, M. Sindel, and G. Kotliar, Eur. Phys. J. B 24, 87 (2001).CrossRefGoogle Scholar
  45. 45.
    N. M. Plakida, Z. Phys. B: Condens. Matter 103, 383 (1997).CrossRefADSGoogle Scholar
  46. 46.
    G. Jackeli and N. M. Plakida, Phys. Rev. B: Condens. Matter 60, 5266 (1999).ADSGoogle Scholar
  47. 47.
    A. M. Belemuk, A. F. Barabanov, and L. A. Maksimov, Zh. Éksp. Teor. Fiz. 129(3), 493 (2006) [JETP 102 (3), 431 (2006)].Google Scholar
  48. 48.
    A. M. Belemuk, A. F. Barabanov, and L. A. Maksimov, Pis’ma Zh. Éksp. Teor. Fiz. 86(5), 374 (2007) [JETP Lett. 86 (5), 321 (2007)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. G. Ovchinnikov
    • 1
    • 2
    Email author
  • M. M. Korshunov
    • 1
    • 3
  • L. P. Kozeeva
    • 4
  • A. N. Lavrov
    • 4
  1. 1.Kirenskii Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Department of PhysicsUniversity of FloridaGainesvilleUSA
  4. 4.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations