Advertisement

Josephson effect between nanoclusters in resonance conditions

  • Yu. N. Ovchinnikov
  • V. Z. Kresin
Order, Disorder, and Phase Transition in Condensed System

Abstract

A general expression is derived for the Josephson current between nanoclusters. It is shown that, in the resonance conditions between electron levels of clusters, the expression for the current obtained in the tunnel Hamiltonian model becomes invalid. In the case of degeneracy or close to degeneracy of energy levels in isolated clusters, the critical Josephson current may exceed the value obtained in the model of tunnel Hamiltonian in the large parameter, viz., the ratio of the order parameter |Δ| to the distance between the resonance level and the levels closest to it.

Keywords

Theoretical Physic Resonance Condition Orbital Angular Momentum Resonance Level Spherical Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).CrossRefADSGoogle Scholar
  2. 2.
    D. Cobert, U. Schoolwock, and J. von Delft, Eur. Phys. J. B 38, 501 (2004).CrossRefADSGoogle Scholar
  3. 3.
    Yu. N. Ovchinnikov, S. Rombetto, B. Ruggiero, V. Corato, and P. Silvestrini, Phys. Lett. A 372, 904 (2008).CrossRefADSGoogle Scholar
  4. 4.
    Yu. N. Ovchinnikov, P. Silvestrini, V. Corato, and S. Romberto, Phys. Rev. B 71, 024529 (2005).CrossRefADSGoogle Scholar
  5. 5.
    Yu. N. Ovchinnikov and A. Schmid, Phys. Rev. B 50, 6332 (1994).CrossRefADSGoogle Scholar
  6. 6.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1965).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatgiz, Moscow, 1963; Butterworth-Heinemann, Oxford, 1976).Google Scholar
  8. 8.
    Yu. N. Ovchinnikov and V. Z. Kresin, Eur. Phys. J. B 45, 5 (2005).CrossRefADSGoogle Scholar
  9. 9.
    V. Z. Kresin and Yu. N. Ovchinnikov, Phys. Rev. B 74, 024514 (1–11) (2006).CrossRefADSGoogle Scholar
  10. 10.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Max Planck Institute for Physics of Complex SystemsDresdenGermany
  3. 3.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkleyUSA

Personalised recommendations