Advertisement

Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding

  • D. A. Kronberg
  • S. N. Molotkov
Atoms, Molecules, Optics

Abstract

A quantum circuit is constructed for optimal eavesdropping on quantum key distribution proto- cols using phase-time coding, and its physical implementation based on linear and nonlinear fiber-optic components is proposed.

Keywords

Time Slot Quantum Circuit CNOT Gate BB84 Protocol Single Photon State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computer Systems and Signal Processing, Bangalore, India, December 10–12, 1984 (The IEEE Computer Society of America, New York, 1984), p. 175.Google Scholar
  3. 3.
    C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992); C. H. Bennett, “Interferometric Quantum Key Distribution System,” US Patent No. 5, 307, 410 (April 26, 1994).MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    W. K. Wooters and W. H. Zurek, Nature (London) 299,802 (1982).CrossRefADSGoogle Scholar
  5. 5.
    R. Renner, arXiv:quant-ph/0512258.Google Scholar
  6. 6.
    A. V. Korol’kov, K. G. Katamadze, S. P. Kulik, and S. N. Molotkov, Zh. Éksp. Teor. Fiz. 137(4), 637 (2010) [JETP 110 (4) (2010) (in press)].Google Scholar
  7. 7.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, arXiv:quant-ph/0101098; Rev. Mod. Phys. 74, 145 (2002).CrossRefADSGoogle Scholar
  8. 8.
    S. N. Molotkov and A. V. Timofeev, Pis’ma Zh. Éksp. Teor. Fiz. 85(10), 632 (2007) [JETP Lett. 85 (10), 524 (2007)].Google Scholar
  9. 9.
    A. S. Kholevo, Modern Mathematical Physics: Introduction to the Quantum Theory of Information (MTsNMO, Moscow, 2002), issue 5 [in Russian]; Usp. Mat. Nauk 53, 193 (1998).Google Scholar
  10. 10.
    S. P. Kulik, S. N. Molotkov, and A. P. Makkaveev, Pis’ma Zh. Éksp. Teor. Fiz. 85(6), 354 (2007) [JETP Lett. 85 (6), 297 (2007)].Google Scholar
  11. 11.
    S. N. Molotkov, Zh. Éksp. Teor. Fiz. 133(1), 5 (2008) [JETP 106 (1), 1 (2008)].Google Scholar
  12. 12.
    D. A. Kronberg and S. N. Molotkov, Zh. Éksp. Teor. Fiz. 136(4), 650 (2009) [JETP 109 (4), 557 (2009)].Google Scholar
  13. 13.
    V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, arXiv:quant- ph/0802.4155.Google Scholar
  14. 14.
    W. Mauerer, W. Helwig, and C. Silberhorn, arXiv:quant-ph/0712.0517.Google Scholar
  15. 15.
    T. Kim, I. S. genannt Wersborg, F. N. C. Wong, and J. H. Shapiro, arXiv:quant-ph/0611235.Google Scholar
  16. 16.
    M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001; Mir, Moscow, 2006).Google Scholar
  17. 17.
    R. J. Hughes, G. L. Morgan, and C. G. Peterson, arXiv:quant-ph/9904038.Google Scholar
  18. 18.
    R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, and M. Schauer, Contemp. Phys. 36, 149 (1995).CrossRefADSGoogle Scholar
  19. 19.
    R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, and C. M. Simmons, in Proceedings of the 16th Annual International Cryptology Conference, “Advances in Cryptology” (Crypto’96), Santa Barbara, California, United States, 1996 (Springer, Berlin, 1996), p. 329.Google Scholar
  20. 20.
    P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 634 (1993).CrossRefGoogle Scholar
  21. 21.
    A. Muller, H. Zbinden, and N. Gisin, Europhys. Lett. 33, 335 (1996).CrossRefADSGoogle Scholar
  22. 22.
    C. Marand and P. D. Townsend, Opt. Lett. 20, 1695 (1995).CrossRefADSGoogle Scholar
  23. 23.
    P. D. Townsend, Nature (London) 385, 47 (1997).CrossRefADSGoogle Scholar
  24. 24.
    P. D. Townsend, Electron. Lett. 30, 809 (1994).CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    J. D. Franson and H. Ilves, Appl. Opt. 33, 2949 (1994).CrossRefADSGoogle Scholar
  26. 26.
    A. Muller, H. Zbinden, and N. Gisin, Nature (London) 378, 449 (1995).CrossRefADSGoogle Scholar
  27. 27.
    H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, Electron. Lett. 33, 586 (1997).CrossRefGoogle Scholar
  28. 28.
    A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).CrossRefADSGoogle Scholar
  29. 29.
    D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zhbinden, New J. Phys. 4, 41.1 (2002).CrossRefGoogle Scholar
  30. 30.
    D. S. Bethune and W. P. Risk, in International Quantum Electronics Conference (IQEC’98), Digest of Postdeadline Papers, the Moscone Center, San Francisco, California, United States, May 3–8, 1998 (The Optical Society of America, Washington, DC, United States, 1998), Vol. QPD12-2.Google Scholar
  31. 31.
    D. S. Bethune and W. P. Risk, IEEE J. Quantum. Electron. 36, 340 (2000).CrossRefADSGoogle Scholar
  32. 32.
    D. S. Bethune, M. Navarro, and W. P. Risk, arXiv:quant-ph/0104089.Google Scholar
  33. 33.
    C. Elliott, D. Pearson, and G. Troxel, arXiv:quant-ph//0307049.Google Scholar
  34. 34.
    C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, arXiv:quant-ph/0503058; C. Elliot, New J. Phys. 4, 46.1 (2002).CrossRefGoogle Scholar
  35. 35.
    Y. Nambu, T. Hatanaka, H. Yamazaki, and K. Nakamura, arXiv:quant-ph/0404015.Google Scholar
  36. 36.
    T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, arXiv:quant-ph//0603041.Google Scholar
  37. 37.
    Y. Nambu, K. Yoshino, and A. Tomita, arXiv:quant-ph/0403104.Google Scholar
  38. 38.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).MATHCrossRefADSGoogle Scholar
  39. 39.
    S. Rebi, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbal, Phys. Rev. A: At., Mol., Opt. Phys. 70, 032317 (2004).ADSGoogle Scholar
  40. 40.
    S. Glancy, J. M. LoSecco, and C. E. Tanner, arXiv:quant-ph/0009110.Google Scholar
  41. 41.
    Hiroshi Ajiki, Wang Yao, and Lu J. Sham, Superlattices Microstruct. 34, 213 (2003).CrossRefADSGoogle Scholar
  42. 42.
    C. Ottaviani, S. Rebi, D. Vitali, and P. Tombesi, Pre-print No. QMJ5 (2006).Google Scholar
  43. 43.
    Amitabh Joshi and Min Xiao, Phys. Rev. A: At., Mol., Opt. Phys. 72, 062319 (2005).ADSGoogle Scholar
  44. 44.
    P. M. Leung, T. C. Ralph, W. J. Munro, and Kae Nemoto, arXiv:quant-ph/0810.2828.Google Scholar
  45. 45.
    Amitabh Joshi and Min Xiao, Preprint No. JWB100 (2005).Google Scholar
  46. 46.
    T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A: At., Mol., Opt. Phys. 64, 062311 (2001).ADSGoogle Scholar
  47. 47.
    T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, Phys. Rev. A: At., Mol., Opt. Phys. 65, 062324 (2002).ADSGoogle Scholar
  48. 48.
    H. F. Hofmann and Shigeki Takeuchi, Phys. Rev. A: At., Mol., Opt. Phys. 66, 024308 (2002).ADSGoogle Scholar
  49. 49.
    J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, Nature (London) 426, 264 (2003).CrossRefADSGoogle Scholar
  50. 50.
    S. N. Molotkov, Pis’ma Zh. Éksp. Teor. Fiz. 91(1), 51 (2010) [JETP Lett. 91 (1), 48 (2010)].Google Scholar
  51. 51.
    C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Solid-State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Academy of Cryptography of the Russian FederationMoscowRussia
  3. 3.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations