Multiconfiguration Hartree-Fock method: Direct diagonalization for the construction of a multielectron basis

Atoms, Molecules, Optics
  • 59 Downloads

Abstract

A method based on the direct diagonalization of basis states in the framework of the multiconfiguration Hartree-Fock procedure has been proposed for constructing the multielectron basis. With the use of the technique of ladder operators of the orbital angular momentum and spin, this method has been generalized to the case of arbitrary electron configurations. It has been shown that such an approach can be easily implemented on a computer and has low requirements for computational resources in the case of d and f-electrons. The calculations of the multielectron basis states have been exemplified for several electron configurations and various sets of quantum numbers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Froese Fisher, T. Brage, and P. Jönsson, Computational Atomic Structure: An MCHF Approach (Institute of Physics, Bristol and Philadelphia, 2003).Google Scholar
  2. 2.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935; Inostrannaya Literatura, Moscow, 1949).Google Scholar
  3. 3.
    J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960).MATHGoogle Scholar
  4. 4.
    I. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1982).Google Scholar
  5. 5.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).Google Scholar
  6. 6.
    I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Fizmatlit, Moscow, 1963; Pergamon, Oxford, 1972).Google Scholar
  7. 7.
    G. Racah, Phys. Rev. 61, 186 (1941).CrossRefADSGoogle Scholar
  8. 8.
    G. Racah, Phys. Rev. 62, 438 (1942).CrossRefADSGoogle Scholar
  9. 9.
    G. Racah, Phys. Rev. 63, 367 (1943).CrossRefADSGoogle Scholar
  10. 10.
    G. Racah, Phys. Rev. 76, 1352 (1949).MATHCrossRefADSGoogle Scholar
  11. 11.
    N. M. Gray and L. A. Wills, Phys. Rev. 38, 248 (1931).MATHCrossRefADSGoogle Scholar
  12. 12.
    M. H. Johnson, Jr., Phys. Rev. 38, 1628 (1931).MATHCrossRefADSGoogle Scholar
  13. 13.
    M. H. Johnson, Jr., Phys. Rev. 39, 197 (1932).MATHCrossRefADSGoogle Scholar
  14. 14.
    H. A. Bethe, Intermediate Quantum Mechanics (W. A. Benjamin, New York, 1964; Mir, Moscow, 1965).Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2001; Butterworth-Heinemann, Oxford, 2002).Google Scholar
  16. 16.
    G. H. Golub, C. F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, Maryland, United States, 1996; Mir, Moscow, 1999).MATHGoogle Scholar
  17. 17.
    http://td.lpi.ru, pages “People,” M. S. Litsarev.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations