Advertisement

Studying the electronic structure of Cr x Ti1−xSe2 by X-ray resonance and absorption spectroscopy

  • A. S. ShkvarinEmail author
  • Yu. M. Yarmoshenko
  • N. A. Skorikov
  • A. I. Merentsov
  • A. N. Titov
  • P. A. Slepukhin
  • D. E. Marchenko
  • M. Sperling
Solids and Liquids

Abstract

Cr x Ti1 − xSe2 (x = 0–0.83) solid solutions have been synthesized. Single crystals have been grown in the range of concentrations x = 0–0.83. Structural studies of samples have revealed that chromium atoms substitute titanium in the TiSe2 matrix. The X-ray photoelectron spectra of the core levels, the resonance spectra of the valence bands in 1T-Cr x Ti1 − xSe2, and the X-ray absorption spectra of titanium and chromium are studied. The titanium and chromium atoms are shown to have oxidation numbers of +4 and +3, respectively, in an identical octahedral environment. The local density of chromium states has been calculated. The results of the calculation agree well with the experimental data and indicate that the electronic 3d states of chromium substituting titanium in the matrix are spin-polarized and the density of chromium states is halfmetal magnet in behavior.

Keywords

Titanium Atom Chromium Atom CrSe Chromium State Slater Integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Fang, C. F. van Bruggen, R. A. de Groot, G. A. Wiegers, and C. Haas, J. Phys.: Condens. Matter 9, 10173 (1997).ADSGoogle Scholar
  2. 2.
    H. P. Hughes, A. W. Parke, R. H. Williams, and J. J. Barry, J. Phys. C: Solid State Phys. 14, L1103 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    A. N. Titov, A. V. Kuranov, V. G. Pleschev, Yu. M. Yarmoshenko, M. V. Yablonskikh, A. V. Postnikov, S. Plogmann, M. Neumann, A. V. Ezhov, and E. Z. Kurmaev, Phys. Rev. B: Condens. Matter 63, 035106 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    A. N. Titov, Yu. M. Yarmoshenko, S. G. Titova, L. S. Krasavin, and M. Neumann, Physica B (Amsterdam) 328, 108 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    T. Hibma, M. S. Wittingham, and A. J. Jacobsen, Intercalation Chemistry (Academic, London, 1982), p. 285.CrossRefGoogle Scholar
  6. 6.
    C. F. van Bruggen, R. J. Haage, G. A. Wiegers, and D. K. G. de Boer, Physica B (Amsterdam) 99, 166 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    A. N. Titov, A. I. Merentsov, and V. N. Neverov, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1390 (2006) [Phys. Solid State 48 (8), 1477 (2006)].Google Scholar
  8. 8.
    A. N. Titov, Yu. M. Yarmoshenko, A. Zimina, M. V. Yablonskikh, A. V. Postnikov, and S. Eisebitt, Fiz. Tverd. Tela (St. Petersburg) 50(6), 1138 (2008) [Phys. Solid State 50 (6), 1186 (2008)].Google Scholar
  9. 9.
    F. M. F. de Groot, CTM4XAS Charge Transfer Multiplet Course: The Simulation of the Transition Metal 2p and 3p XAS, XPS, and XMCD Spectra, http://www.anorg.chem.uu.nl/people/staff/Frankde-Groot/.
  10. 10.
    C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).zbMATHGoogle Scholar
  11. 11.
    F. M. F. de Groot, J. C. Fuggle, B. T. Tole, and G. A. Savatzky, Phys. Rev. B: Condens. Matter 41, 12582 (1990).CrossRefGoogle Scholar
  12. 12.
    C.-O. Almbladh and L. Hedin, in Handbook on Synchrotron Radiation, Ed. by E. E. Koch (North-Holland, Amsterdam, The Netherlands, 1983), Vol. 1, p. 635.Google Scholar
  13. 13.
    B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak, and J.-M. Esteva, Phys. Rev. B: Condens. Matter 32, 5107 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    J. Zaanen and G. A. Sawatzky, Phys. Rev. B: Condens. Matter 33, 8074 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    C. Theil, J. van Elp, and F. Folkmann, Phys. Rev. B: Condens. Matter 59, 7931 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32,1 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    S. Hüfner, S.-H. Yang, B. S. Mun, C. S. Fadley, J. Schäfer, E. Rotenberg, and S. D. Kevan, Phys. Rev. B: Condens. Matter 61, 12 582 (2000).CrossRefGoogle Scholar
  18. 18.
    T. V. Kuznetsova, A. N. Titov, Yu. M. Yarmoshenko, E. Z. Kurmaev, A. V. Postnikov, V. G. Pleschev, B. Eltner, G. Nicolay, D. Ehm, S. Schmidt, F. Reinert, and S. Hüfner, Phys. Rev. B: Condens. Matter 72, 085418 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Vienna University of Technology, Vienna, Austria, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. S. Shkvarin
    • 1
    Email author
  • Yu. M. Yarmoshenko
    • 1
  • N. A. Skorikov
    • 1
  • A. I. Merentsov
    • 1
  • A. N. Titov
    • 1
  • P. A. Slepukhin
    • 2
  • D. E. Marchenko
    • 3
  • M. Sperling
    • 3
  1. 1.Institute of Metal PhysicsRussian Academy of Sciences, Ural BranchYekaterinburgRussia
  2. 2.Institute of Organic SynthesisRussian Academy of Sciences, Ural BranchYekaterinburgRussia
  3. 3.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations