Advertisement

Heat and mass transfer in a gas in a capillary induced by light with nonuniform intensity distribution over the beam cross section

  • V. G. Chernyak
  • A. P. Polikarpov
Atoms, Molecules, Optics
  • 36 Downloads

Abstract

An analysis is presented of the heat and drift fluxes induced by velocity-selective light absorption in a single-component gas in a capillary tube. The light intensity distribution across the beam is assumed to have a Gaussian profile. Kinetic equations are solved numerically to calculate flux profiles and kinetic coefficients quantifying the contributions of surface and collisional mechanisms to light-induced transfer as functions of the Knudsen number, the ratio of the rate of radiative decay of the exited level and intermolecular collision frequency, accommodation coefficient, and the ratio of the tube radius to the light beam radius.

Keywords

Tube Axis Kinetic Coefficient Light Distribution Accommodation Coefficient Tube Cross Section 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Ghiner, M. I. Stockman, and M. A. Vaksman, Phys. Lett. A 96, 79 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    I. V. Chermyaninov and V. G. Chernyak, Inzh.-Fiz. Zh. 55, 906 (1988).Google Scholar
  3. 3.
    V. G. Chernyak, E. A. Vintovkina, and I. V. Chermyaninov, Zh. Eksp. Teor. Fiz. 103(5), 1571 (1993) [JETP 76 (5), 768 (1993)].Google Scholar
  4. 4.
    V. G. Chernyak and E. A. Subbotin, Zh. Eksp. Teor. Fiz. 108(1), 227 (1995) [JETP 81 (1), 122 (1995)].Google Scholar
  5. 5.
    F. J. McCormack, Phys. Fluids 16, 2095 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Chermyaninov, V. G. Chernyak, and E. A. Vilisova, Zh. Eksp. Teor. Fiz. 132(3), 579 (2007) [JETP 105 (3), 511 (2007)].Google Scholar
  7. 7.
    S. I. Atutova, I. M. Ermolaeva, and A. M. Shalagina, Zh. Eksp. Teor. Fiz. 92(4), 1215 (1987) [Sov. Phys. JETP 65 (4), 679 (1987)].Google Scholar
  8. 8.
    R. W. M. Hoogeveen, G. J. van der Meer, L. J. F. Hermans, A. V. Ghiner, and I. Kuscer, Phys. Rev. A: At., Mol., Opt. Phys. 39, 5539 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    F. Kh. Gel’mukhanov and L. V. Il’ichev, Khim. Fiz. 3, 1544 (1984).Google Scholar
  10. 10.
    G. J. Van der Meer, R. W. M. Hoogeveen, L. J. F. Hermans, and P. L. Chapovsky, Phys. Rev. A: At., Mol., Opt. Phys. 39, 5237 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    P. L. Chapovsky, G. J. Van der Meer, J. Smeets, and L. J. F. Hermans, Phys. Rev. A: At., Mol., Opt. Phys. 45, 8011 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Radtsig and B. M. Smirnov, Handbook on the Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Ural State UniversityYekaterinburgRussia

Personalised recommendations