Advertisement

Diffusion transport of negative ions through the interface between cryogenic liquids

  • E. V. LebedevaEmail author
  • A. M. Dyugaev
  • P. D. Grigoriev
Statistical, Nonlinear, and Soft Matter Physics

Abstract

A theory of electron bubble transport through the interface between cryogenic liquids is developed based on a new approach to calculating the potential of interaction of a bubble with the interface. The theory is in good agreement with experiments on the electric-field dependence of the potential barrier near the interface between liquid 4He, 3He, and vacuum, as well as at the interface between 3He and 4He saturated solutions. It is found that the interaction potential dependence on the distance between the electron bubble and the interface is isotopically invariant to three versions of such an interface. The dependence of the lifetime of negative ions in 4He and 3He on the temperature and electric field has been determined using the Kramers theory.

Keywords

Saturated Solution Helium Atom Diffusion Transport Bubble Radius Dependence Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. W. Rayfield and W. Schoepe, Phys. Lett. A 34, 133 (1971).CrossRefADSGoogle Scholar
  2. 2.
    W. Schoepe and G. W. Rayfield, Phys. Rev. A: At., Mol., Opt. Phys. 7, 2111 (1973).ADSGoogle Scholar
  3. 3.
    M. W. Cole and J. R. Klein, J. Low Temp. Phys. 36, 331 (1979).CrossRefADSGoogle Scholar
  4. 4.
    W. Schoepe and C. Probst, Phys. Lett. A 31, 490 (1970).CrossRefADSGoogle Scholar
  5. 5.
    M. Kuchnir, Pat. R. Roach, and J. B. Ketterson, J. Low Temp. Phys. 3(2), 183 (1970).CrossRefADSGoogle Scholar
  6. 6.
    A. M. Dyugaev, P. D. Grigor’ev, and E. V. Lebedeva, Pis’ma Zh. Éksp. Teor. Fiz. 89(3), 165 (2009) [JETP Lett. 89 (3), 145 (2009)].Google Scholar
  7. 7.
    F. Ancilotto and F. Toigo, Phys. Rev. B: Condens. Matter 50, 12 820 (1994).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1991).Google Scholar
  9. 9.
    B. N. Esel’son, V. N. Grigor’ev, V. G. Ivantsov, E. Ya. Rudavskii, D. G. Sanikidze, and I. A. Serbin, Solutions of 3 He- 4 He Quantum Liquids (Nauka, Moscow, 1973) [in Russian].Google Scholar
  10. 10.
    H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    M. Kuchnir, Pat. R. Roach, and J. B. Ketterson, Phys. Rev. A: At., Mol., Opt. Phys. 2, 262 (1970).ADSGoogle Scholar
  13. 13.
    V. B. Shikin and Yu. P. Monarkha, Two-Dimensional Charged Systems in Helium (Nauka, Moscow, 1989) [in Russian].Google Scholar
  14. 14.
    L. Bruschi, G. Mazzi, M. Santini, and G. Torzo, J. Phys. C: Solid State Phys. 8, 1412 (1975).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Levchenko and L. P. Mezhov-Deglin, Pis’ma Zh. Éksp. Teor. Fiz. 60(6), 452 (1994) [JETP Lett. 60 (6), 470 (1994)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. V. Lebedeva
    • 1
    Email author
  • A. M. Dyugaev
    • 2
    • 3
  • P. D. Grigoriev
    • 2
    • 3
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Max-Planck-Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations