Advertisement

Giant waves in weakly crossing sea states

  • V. P. Ruban
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The formation of rogue waves in sea states with two close spectral maxima near the wave vectors k 0 ± Δk/2 in the Fourier plane is studied through numerical simulations using a completely nonlinear model for long-crested surface waves [24]. Depending on the angle θ between the vectors k 0 and Δk, which specifies a typical orientation of the interference stripes in the physical plane, the emerging extreme waves have a different spatial structure. If θ ≲ arctan(1/√2), then typical giant waves are relatively long fragments of essentially two-dimensional ridges separated by wide valleys and composed of alternating oblique crests and troughs. For nearly perpendicular vectors k 0 and Δk, the interference minima develop into coherent structures similar to the dark solitons of the defocusing nonlinear Schroedinger equation and a two-dimensional killer wave looks much like a one-dimensional giant wave bounded in the transverse direction by two such dark solitons.

Keywords

Soliton Coherent Structure Rogue Wave Dark Soliton Extreme Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Kharif and E. Pelinovsky, Eur. J. Mech. B/Fluids 22, 603 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K. Dysthe, H. E. Krogstad, and P. Muller, Annu. Rev. Fluid Mech. 40, 287 (2008).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Special Issue: Eur. J. Mech. B/Fluids 25, 535 (2006).Google Scholar
  4. 4.
    P. A. E. M. Janssen, J. Phys. Oceanogr. 33, 863 (2003).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    F. Fedele and M. A. Tayfun, J. Fluid Mech. 620, 221 (2009).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    C. Fochesato, S. Grilli, and F. Dias, Wave Motion 44, 395 (2007).CrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Socquet-Juglard, K. Dysthe, and K. Trulsen, H. E. Krogstad, and J. Liu, J. Fluid Mech. 542, 195 (2005).zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    V. P. Ruban, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 036 305 (2006).Google Scholar
  9. 9.
    V. P. Ruban, Phys. Rev. Lett. 99, 044 502 (2007).CrossRefGoogle Scholar
  10. 10.
    A. I. Dyachenko and V. E. Zakharov, Pis’ma Zh. Éksp. Teor. Fiz. 88(5), 356 (2008) [JETP Lett. 88 (5), 307 (2008)].Google Scholar
  11. 11.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B/Fluids 21, 283 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. I. Dyachenko and V. E. Zakharov, Pis’ma Zh. Éksp. Teor. Fiz. 81(6), 318 (2005) [JETP Lett. 81 (6), 255 (2005)].Google Scholar
  13. 13.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Prokofiev, Eur. J. Mech. B/Fluids 25, 677 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    O. Gramstad and K. Trulsen, J. Fluid Mech. 582, 463 (2007).zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, and K. Trulsen, Phys. Rev. Lett. 102, 114502 (2009).CrossRefADSGoogle Scholar
  16. 16.
    M. Onorato, A. R. Osborne, and M. Serio, Phys. Rev. Lett. 96, 014503 (2006).CrossRefADSGoogle Scholar
  17. 17.
    P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, and L. Stenflo, Phys. Rev. Lett. 97, 094501 (2006).CrossRefADSGoogle Scholar
  18. 18.
    V. E. Zakharov, Zh. Éksp. Teor. Fiz. 51(2), 688 (1966) [Sov. Phys. JETP 24 (2), 455 (1966)].Google Scholar
  19. 19.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).CrossRefADSGoogle Scholar
  20. 20.
    T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).zbMATHCrossRefADSGoogle Scholar
  21. 21.
    M. A. Tayfun, J. Geophys. Res., C: Oceans Atmos. 85, 1548 (1980).CrossRefADSGoogle Scholar
  22. 22.
    D. H. Peregrine, Adv. Appl. Mech. 16, 9 (1976).zbMATHCrossRefGoogle Scholar
  23. 23.
    I. V. Lavrenov and A. V. Porubov, Eur. J. Mech. B/Fluids 25, 574 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    V. P. Ruban, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 055 303(R) (2005).MathSciNetADSGoogle Scholar
  25. 25.
    V. P. Ruban and J. Dreher, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 066 303 (2005).MathSciNetGoogle Scholar
  26. 26.
    K. B. Dysthe, Proc. R. Soc. London, Ser. A 369, 105 (1979).zbMATHCrossRefADSGoogle Scholar
  27. 27.
    K. Trulsen and K. B. Dysthe, Wave Motion 24, 281 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    K. Trulsen, I. Kliakhandler, K. B. Dysthe, and M. G. Velarde, Phys. Fluids 12, 2432 (2000).CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    V. P. Ruban, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 065 304(R) (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations