Stability of a deposited liquid cluster

  • P. V. Kashtanov
  • R. Hippler
  • B. M. Smirnov
  • S. R. Bhattacharyya
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The fragmentation of silver liquid clusters deposited onto a silicon surface is observed after heating the clusters to 1073 K and subsequent annealing with the exposition time 3 min. This contradicts macroscopic models of a liquid drop deposited on a surface if we use critical parameters of bulk silver. Some versions are analyzed that are based on cluster properties and may explain the phenomenon of cluster fragmentation. An experiment is suggested for clarifying the nature of the cluster fragmentation phenomenon and cluster critical phenomena.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Binns, Surf. Sci. Rep. 44, 1 (2001).CrossRefADSGoogle Scholar
  2. 2.
    K. Shintani, Y. Taniguchi, and S. Kameoka, J. Appl. Phys. 95, 8207 (2004).CrossRefADSGoogle Scholar
  3. 3.
    S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, Lett. Appl. Microbiol. 25, 279 (1997).CrossRefGoogle Scholar
  4. 4.
    A. Gupta and S. Silver, Nat. Biotechnol. 16, 888 (1998).CrossRefGoogle Scholar
  5. 5.
    K. Nomiya, A. Yoshizawa, K. Tsukagoshi, N. C. Kasuga, S. Hirakawa, and J. Watanabe, J. Inorg. Biochem. 98, 46 (2004).CrossRefGoogle Scholar
  6. 6.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, Nanotechnology 16, 2346 (2005).CrossRefADSGoogle Scholar
  7. 7.
    I. Shyjumon, M. Gopinadhan, C. A. Helm, B. M. Smirnov, and R. Hippler, Thin Solid Films 500, 41 (2006).CrossRefADSGoogle Scholar
  8. 8.
    I. Shyjumon, M. Gopinadhan, O. Ivanova, M. Quaas, H. Wulff, C. A. Helm, and R. Hippler, Eur. Phys. J. D 37, 409 (2006).CrossRefADSGoogle Scholar
  9. 9.
    B. M. Smirnov, I. Shyjumon, and R. Hippler, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 066 402 (2007).Google Scholar
  10. 10.
    S. R. Bhattacharyya, T. K. Chini, D. Datta, R. Hippler, I. Shyjumon, and B. M. Smirnov, Zh. Éksp. Teor. Fiz. 134(6), 1181 (2008) [JETP 107 (6), 1009 (2008)].Google Scholar
  11. 11.
    S. R. Bhattacharyya, D. Datta, I. Shyjumon, B. M. Smirnov, T. K. Chini, D. Ghose, and R. Hippler, J. Phys. D: Appl. Phys. 42, 035 306 (2009).Google Scholar
  12. 12.
    S. Ino, J. Phys. Soc. Jpn. 27, 941 (1969).CrossRefADSGoogle Scholar
  13. 13.
    B. M. Smirnov, Clusters and Small Particles in Gases and Plasmas (Springer, New York, 1999).Google Scholar
  14. 14.
    E. P. Wigner and F. Seits, Phys. Rev. 46, 509 (1934).MATHCrossRefADSGoogle Scholar
  15. 15.
    E. P. Wigner, Phys. Rev. 46, 1002 (1934).MATHCrossRefADSGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).Google Scholar
  17. 17.
    B. M. Smirnov, Reference Data on Atomic Physics and Atomic Processes (Springer, Heidelberg, 2008).Google Scholar
  18. 18.
    V. E. Fortov, A. G. Khrapak, and I. T. Iakubov, The Physics of Non-Ideal Plasma (Fizmatlit, Moscow, 2004; World Scientific, Singapore, 1999).Google Scholar
  19. 19.
    J. J. Bikerman, Surface Chemistry (Academic, New York, 1958).Google Scholar
  20. 20.
    D. P. Woodruff, The Solid-Liquid Interface (Academic, London, 1973).Google Scholar
  21. 21.
    A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1976).Google Scholar
  22. 22.
    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1989).Google Scholar
  23. 23.
    M. E. Schrader and G. I. Loeb, Modern Approaches to Wettability: Theory and Applications (Plenum, New York, 1992).Google Scholar
  24. 24.
    P. L. Gai and E. D. Boyes, Electron Microscopy in Heterogeneous Catalysis (Institute of Physics, London, 2003).CrossRefGoogle Scholar
  25. 25.
    P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefADSGoogle Scholar
  26. 26.
    C. Isenberg, The Science of Soap Films and Soap Bubles (Dover, New York, 1992).Google Scholar
  27. 27.
    P. G. de Gennes, Soft Interfaces (Cambridge University Press, Cambridge, 1994).Google Scholar
  28. 28.
    N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at High Temperatures (Pergamon, Oxford, 1999).Google Scholar
  29. 29.
  30. 30.
    T. Young, Philos. Trans. R. Soc. London 1, 84 (1805).Google Scholar
  31. 31.
    T. Young, Proc. R. Soc. London 95, 65 (1805).Google Scholar
  32. 32.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).Google Scholar
  33. 33.
    T. P. Martin, U. Näher, H. Schaber, and U. Zimmermann, J. Chem. Phys. 100, 2322 (1994).CrossRefADSGoogle Scholar
  34. 34.
    T. P. Martin, Phys. Rep. 273, 199 (1996).CrossRefADSGoogle Scholar
  35. 35.
    M. Schmidt, R. Kusche, W. Kronmüller, B. von Issendorf, and H. Haberland, Phys. Rev. Lett. 79, 99 (1997).CrossRefADSGoogle Scholar
  36. 36.
    M. Schmidt, R. Kusche, B. von Issendorf, and H. Haberland, Nature (London) 393, 238 (1998).CrossRefADSGoogle Scholar
  37. 37.
    B. M. Smirnov and R. S. Berry, Phase Transitions in Simple Atomic Systems (Springer, Heidelberg, 2007).Google Scholar
  38. 38.
    T. L. Beck, J. Jellinek, and R. S. Berry, J. Chem. Phys. 87, 545 (1987).CrossRefADSGoogle Scholar
  39. 39.
    H. Arslan and M. H. Güven, New J. Phys. 7, 60 (2005).CrossRefADSGoogle Scholar
  40. 40.
    E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford, University Press, New York, 1971).Google Scholar
  41. 41.
    A. R. Ubbelohde, The Molten State of Matter (Wiley, Chichester, 1978).Google Scholar
  42. 42.
    C. Domb, The Critical Point (Taylor and Francis, London, 1996).Google Scholar
  43. 43.
    D. I. Zhukhowitskii, J. Chem. Phys. 125, 234701 (2006).CrossRefADSGoogle Scholar
  44. 44.
    D. I. Zhukhowitskii, J. Chem. Phys. 129, 194511 (2008).CrossRefADSGoogle Scholar
  45. 45.
    Clusters of Atoms and Molecules, Ed. by H. Haberland (Springer, New York, 1994).Google Scholar
  46. 46.
    Theory of Atomic and Molecular Clusters, Ed. by J. Jellinek (Springer, Berlin, 1999).Google Scholar
  47. 47.
    Metal Clusters, Ed. by W. Ekardt (Wiley, New York, 1999).Google Scholar
  48. 48.
    D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).Google Scholar
  49. 49.
    J. Jellinek, T. L. Beck, and R. S. Berry, J. Chem. Phys. 84, 2783 (1986).CrossRefADSGoogle Scholar
  50. 50.
    R. S. Berry, Chem. Rev. 93, 2379 (1993).CrossRefGoogle Scholar
  51. 51.
    J. W. Gibbs, Trans. Conn. Acad. Arts Sci. 3, 108 (1875); Trans. Conn. Acad. Arts Sci. 3, 343 (1878).Google Scholar
  52. 52.
    J. W. Gibbs, The Collected Works (Longmans and Green, New York, 1928).MATHGoogle Scholar
  53. 53.
    B. M. Smirnov, Principles of Statistical Physics (Wiley, Berlin, 2006).MATHCrossRefGoogle Scholar
  54. 54.
    W. Ostwald, Z. Phys. Chem. (Leipzig) 34, 495 (1900).Google Scholar
  55. 55.
    B. Lewis and J. C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978).Google Scholar
  56. 56.
    S. A. Kukushkin and V. V. Slezov, Disperse Systems on Solid Surfaces (Nauka, St. Petersburg, 1996) [in Russian].Google Scholar
  57. 57.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: Statistical Physics: Part 2 (Nauka, Moscow, 1978; Pergamon, Oxford, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • P. V. Kashtanov
    • 1
  • R. Hippler
    • 2
  • B. M. Smirnov
    • 1
  • S. R. Bhattacharyya
    • 3
  1. 1.Joint Institute for High Temperatures of Russian Academy of SciencesMoscowRussia
  2. 2.Institut für Physik, Ernst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations