Advertisement

Thermal conductivity of metals with hot electrons

  • N. A. Inogamov
  • Yu. V. Petrov
Electronic Properties of Solid

Abstract

The action of an ultrashort laser pulse transforms a metal into a two-temperature (2T) state with different temperatures of the electron and ion subsystems (T e T i ). The metal stays in this state in a rather long time interval (from several to several tens of picoseconds depending on the metal). The 2T stage is very important since it includes 2T relaxation, in which laser energy is transferred to ions, and the formation of a heated layer, which plays a key role in the subsequent dynamics. The kinetic coefficients of a condensed medium with hot electrons are poorly known: researchers use phenomenological dependences consisting of asymptotics at low and high temperatures T e . However, it is impossible to perform a numerical simulation of the interaction of laser radiation with a substance without these coefficients. In this work, the thermal conductivity is calculated using a kinetic equation for the first time. This calculation is valid at low (T e T F = E F/k B, where E F is the Fermi energy and k B is the Boltzmann constant) and moderate (T e < T F) temperatures. The earlier kinetic calculations are related to the case of T e < T F, where the calculations of, e.g., the electron-electron collision frequency are significantly simplified due to the reduction of multiple integration to integration in a small neighborhood of the Fermi sphere. In our case, integration at moderate temperatures should be performed over the entire volume of momentum space.

Keywords

Thermal Conductivity Fermi Surface Collision Frequency Ultrashort Laser Pulse Effective Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Éksp. Teor. Fiz. 66(2), 776 (1974) [Sov. Phys. JETP 39 (2), 370 (1974)].ADSGoogle Scholar
  2. 2.
    P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).CrossRefADSGoogle Scholar
  3. 3.
    X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, Phys. Rev. B: Condens. Matter 50, 8016 (1994).ADSGoogle Scholar
  4. 4.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, Zh. Éksp. Teor. Fiz. 134(1), 5 (2008) [JETP 107 (1), 1 (2008)].Google Scholar
  5. 5.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Hueller, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 1202 (2000).Google Scholar
  6. 6.
    Zh. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B: Condens. Matter 77, 075 133 (2008).Google Scholar
  7. 7.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009); arXiv:0812.2965 [physics.optics].CrossRefADSGoogle Scholar
  8. 8.
    M. B. Agranat, N. E. Andreev, and S. I. Ashitkov, M. E. Veĭsman, P. R. Levashov, A. V. Ovchinnikov, D. S. Sitnikov, V. E. Fortov, and K. V. Khishchenko, Pis’ma Zh. Éksp. Teor. Fiz. 85(6), 328 (2007) [JETP Lett. 85 (6), 271 (2007)].Google Scholar
  9. 9.
    V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, and K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009).CrossRefADSGoogle Scholar
  10. 10.
    M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, Appl. Surf. Sci. 255, 5120 (2009).CrossRefADSGoogle Scholar
  11. 11.
    J. P. Colombier, P. Combis, E. Audouard, and R. Stoian, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 036 409 (2008).Google Scholar
  12. 12.
    S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, J. Phys. D: Appl. Phys. 40, 331 (2007).CrossRefADSGoogle Scholar
  13. 13.
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 016409 (2001).Google Scholar
  14. 14.
    F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, Phys. Rev. Lett. 86, 2573 (2001).CrossRefADSGoogle Scholar
  15. 15.
    M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Zh. Éksp. Teor. Fiz. 31, 232 (1956) [Sov. Phys. JETP 4, 173 (1956)].Google Scholar
  16. 16.
    A. V. Lankin, I. V. Morozov, G. ÉR. Norman, and I. Yu. Skobelev, Zh. Éksp. Teor. Fiz. 133(3), 701 (2008) [JETP 106 (3), 608 (2008)].Google Scholar
  17. 17.
    V. Recoules and J.-P. Crocombette, Phys. Rev. B: Condens. Matter 72, 104 202 (2005).Google Scholar
  18. 18.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North Holland, Amsterdam, 1988).Google Scholar
  19. 19.
    N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976; Mir, Moscow, 1979).Google Scholar
  20. 20.
    Y. Z. Hou and J. F. Kos, J. Phys.: Condens. Matter 5, 7797 (1993).CrossRefADSGoogle Scholar
  21. 21.
    V. A. Gasparov and R. Huguenin, Adv. Phys. 42, 393 (1993).CrossRefADSGoogle Scholar
  22. 22.
    E. V. Bezuglyi, N. G. Burma, E. Yu. Deyneka, A. I. Kopeliovich, and V. D. Fil’, J. Low Temp. Phys. 91, 179 (1993).CrossRefADSGoogle Scholar
  23. 23.
    W. E. Lawrence and J. W. Wilkins, Phys. Rev. B: Solid State 7, 2317 (1973).ADSGoogle Scholar
  24. 24.
    W. E. Lawrence, Phys. Rev. B: Solid State 13, 5316 (1976).ADSGoogle Scholar
  25. 25.
    O. K. Wagner and R. Bowers, Adv. Phys. 27, 651, (1978).CrossRefADSGoogle Scholar
  26. 26.
    A. V. Lugovskoy and I. Bray, Phys. Rev. B: Condens. Matter 60, 3279 (1999).ADSGoogle Scholar
  27. 27.
    F. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).Google Scholar
  28. 28.
    V. Recoules, J. Clérouin, G. Zérah, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055 503 (2006).CrossRefGoogle Scholar
  29. 29.
    P. B. Johnson and R. W. Christy, Phys. Rev. B: Solid State 6, 4370 (1972).ADSGoogle Scholar
  30. 30.
    N. E. Christensen and B. O. Seraphin, Phys. Rev. B: Solid State 4, 3321 (1971).ADSGoogle Scholar
  31. 31.
    P. Winsemius, M. Guerrisi, and R. Rosei, Phys. Rev. B: Solid State 12, 4570 (1975).ADSGoogle Scholar
  32. 32.
    Handbook of Optical Constants of Solids: III, Ed. by E. D. Palik (Academic, New York, 1998), Vol. 1.Google Scholar
  33. 33.
    T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, Phys. Rev. Lett. 96, 055001 (2006).CrossRefADSGoogle Scholar
  34. 34.
    Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, Phys. Rev. Lett. 96, 255 003 (2006).CrossRefGoogle Scholar
  35. 35.
    K. Widmann, T. Ao, M. E. Foord, D. F. Price, A. D. Ellis, P. T. Springer, and A. Ng, Phys. Rev. Lett. 92, 125 002 (2004).CrossRefGoogle Scholar
  36. 36.
    C. Voisin, D. Christofilos, P. A. Loukakos, N. Del Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, Phys. Rev. B: Condens. Matter 69, 195 416 (2004).Google Scholar
  37. 37.
    D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B: Condens. Matter 68, 064 114 (2003).Google Scholar
  38. 38.
    S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, and V. A. Khokhlov, Zh. Éksp. Teor. Fiz. 130(2), 212 (2006) [JETP 103 (2), 183 (2006)].Google Scholar
  39. 39.
    S. I. Anisimov and B. Rethfeld, Proc. SPIE—Int. Soc. Opt. Eng. 3093, 192 (1997).ADSGoogle Scholar
  40. 40.
    J. K. Chen and J. E. Beraun, J. Opt. A: Pure Appl. Opt. 5, 168 (2003).CrossRefADSGoogle Scholar
  41. 41.
    S. I. Anisimov, V. V. Zhakhovski’, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, and V. A. Khokhlov, Mat. Model. 18(8), 111 (2006).MATHMathSciNetGoogle Scholar
  42. 42.
    S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, V. V. Zhahovskii, and K. Nishihara, in Laser Ablation and Its Applications, Ed. by C. R. Phipps (Springer, Berlin, 2007), p. 1.CrossRefGoogle Scholar
  43. 43.
    Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).MATHCrossRefADSGoogle Scholar
  44. 44.
    L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).MATHCrossRefADSGoogle Scholar
  45. 45.
    L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962).Google Scholar
  46. 46.
    V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of the Plasma and Plasma-Like Media (Atomizdat, Moscow, 1961) [in Russian].Google Scholar
  47. 47.
    I. T. Yakubov, Usp. Fiz. Nauk 163(5), 35 (1993) [Phys.—Usp. 36 (5), 365 (1993)].CrossRefGoogle Scholar
  48. 48.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations