Journal of Experimental and Theoretical Physics

, Volume 110, Issue 3, pp 367–375

Fluctuation interactions of colloidal particles

Atoms, Molecules, Optics

Abstract

For like-charged colloidal particles, two mechanisms of attraction between them survive when the interparticle distance is larger than the Debye screening length. One of them is the conventional van der Waals attraction and the second is the attraction mechanism mediated by thermal fluctuations of particle position. The latter is related to the effective variable mass (Euler mass) of the particles produced by the fluid motion. The strongest attraction potential (up to the value of the temperature T) corresponds to the case of uncharged particles and a relatively large Debye screening length. In this case, the third attraction mechanism is involved. It is mediated by thermal fluctuations of the fluid density.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Derjaguin, Theory of Stability of Colloids and Thin Films (Consultans Bureau, New York, 1989).Google Scholar
  2. 2.
    J. Israelachvili, Intermolecular and Surface Forces (Academic, San Diego, CA, United States, 1991).Google Scholar
  3. 3.
    P. C. Heimenz and R. Rajagopalan, Principles of Colloidal and Surface Chemistry (Dekker, New York, 1997).Google Scholar
  4. 4.
    P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).CrossRefADSGoogle Scholar
  5. 5.
    G. Y. Onoda, Phys. Rev. Lett. 55, 226 (1985).CrossRefADSGoogle Scholar
  6. 6.
    K. Ito, H. Yoshida, and N. Ise, Science (Washington) 263, 66 (1994).CrossRefADSGoogle Scholar
  7. 7.
    S. J. Mejia-Rosales, R. Gamez-Gomez, B. I. Ivlev, and J. Ruiz-Garcia, Physica A (Amsterdam) 276, 30 (2000).ADSGoogle Scholar
  8. 8.
    P. M. Chaikin, P. Pincus, S. Alexander, and D. Hone, J. Colloid Interface Sci. 89, 555 (1982).CrossRefGoogle Scholar
  9. 9.
    Y. Monovoukas and A. P. Gast, J. Colloid Interface Sci. 128, 533 (1989).CrossRefGoogle Scholar
  10. 10.
    A. E. Larsen and D. G. Grier, Phys. Rev. Lett. 76, 3862 (1996).CrossRefADSGoogle Scholar
  11. 11.
    L. Radzihovsky, E. Frey, and D. Nelson, Bull. Am. Phys. Soc. 45, 698 (2000).Google Scholar
  12. 12.
    K.-H. Lin, J. C. Crocker, and A. G. Yodh, Bull. Am. Phys. Soc. 45, 698 (2000).Google Scholar
  13. 13.
    C.-H. Sow, C. A. Murray, R. W. Zehner, and T. S. Sullivan, Bull. Am. Phys. Soc. 45, 699 (2000).Google Scholar
  14. 14.
    C. A. Murray and D. H. van Winkle, Phys. Rev. Lett. 58, 1200 (1987).CrossRefADSGoogle Scholar
  15. 15.
    K. Zahn, R. Lenke, and G. Marett, Phys. Rev. Lett. 82, 2721 (1999).CrossRefADSGoogle Scholar
  16. 16.
    J. Ruiz-Garcia, R. Gamez-Corrales, and B. I. Ivlev, Physica A (Amsterdam) 236, 97 (1997).ADSGoogle Scholar
  17. 17.
    J. Ruiz-Garcia, R. Gamez-Corrales, and B. I. Ivlev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 58, 660 (1998).Google Scholar
  18. 18.
    J. Ruiz-Garcia and B. I. Ivlev, Mol. Phys. 95, 37 (1998).CrossRefGoogle Scholar
  19. 19.
    T. Chou and D. R. Nelson, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 48, 4611 (1993).Google Scholar
  20. 20.
    J. Rubi and J. M. G. Vilar, J. Phys.: Condens. Matter 12, A75 (2000).CrossRefADSGoogle Scholar
  21. 21.
    E. B. Sirota, H. D. Ou-Yang, S. K. Sinha, P. M. Chaikin, P. Pincus, J. D. Axe, and Y. Fujii, Phys. Rev. Lett. 62, 1524 (1989).CrossRefADSGoogle Scholar
  22. 22.
    H. Lowen, P. A. Madden, and J.-P. Hansen, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 68, 1081 (1992).Google Scholar
  23. 23.
    M. Ospeck and S. Fraden, J. Chem. Phys. 109, 9166 (1998).CrossRefADSGoogle Scholar
  24. 24.
    G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994).CrossRefADSGoogle Scholar
  25. 25.
    J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 77, 1897 (1996).CrossRefADSGoogle Scholar
  26. 26.
    D. G. Grier, Nature (London) 393, 621 (1998).CrossRefADSGoogle Scholar
  27. 27.
    A. E. Larsen and D. G. Grier, Nature (London) 385, 230 (1997).CrossRefADSGoogle Scholar
  28. 28.
    T. M. Squires and M. P. Brenner, Phys. Rev. Lett. 85, 4976 (2000).CrossRefADSGoogle Scholar
  29. 29.
    V. Lobaskin, M. Brunner, C. Bechinger, and H. H. von Grünberg, J. Phys.: Condens. Matter 15, 6693 (2003).CrossRefADSGoogle Scholar
  30. 30.
    C. Bechinger, private communication (2005).Google Scholar
  31. 31.
    M. Gyger, Master Thesis (Universität Leipzig, Leipzig, Germany, 2006).Google Scholar
  32. 32.
    I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961).CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    B. I. Ivlev, J. Phys.: Condens. Matter 14, 4829 (2002).CrossRefADSGoogle Scholar
  34. 34.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1987; Butterworth-Heinemann, Oxford. 1997).Google Scholar
  35. 35.
    D. Drosdoff and A. Widom, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 051 402 (2006).Google Scholar
  36. 36.
    J. Mahanty and B. W. Ninham, Dispersion Forces, (Academic, London, 1976).Google Scholar
  37. 37.
    G. Barton, Elements of Green’s Functions and Propagation (Claredon, Oxford, 1989).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidad Autónoma de San Luis Potosí San Luis Potosí San Luis PotosíMexicoMexico
  2. 2.Department of Physics and Astronomy and NanoCenterUniversity of South Carolina ColumbiaSouth CarolinaUSA

Personalised recommendations